Abstract's details
Further understanding the global mean sea level record over the satellite era
CoAuthors
Event: 2017 Ocean Surface Topography Science Team Meeting
Session: Science Keynotes Session
Presentation type: Type Keynote/invited
Contribution: PDF file
Abstract:
The satellite era time series of Global Mean Sea Level (GMSL) is a seminal climate data record that describes one of the most robust manifestations of climate change. Accurate estimates of the rate of change and possible acceleration of sea level are of major importance for evaluating model projections and for adaptation planning. Watson et al. (2015) investigated the magnitude of inter- and intra-mission biases in sea level, and in particular, the stability of those biases over time. That work suggested that time variable biases, in particular over the early part of the TOPEX record were significantly different to zero, implying a small over estimation in the rate of sea level change. Subsequently, Chen et al. (2017) further investigated the updated Watson et al. (2015) results and reported an improved instantaneous closure of the sea level budget over the altimeter era. Here we summarise these findings and detail recent insights in order to further understand and assess the evolution of the global mean sea level record.