Abstract's details

The ocean mesoscale regime of the reduced-gravity quasi-geostrophic model

Roger Samelson (Oregon State University, United States)

CoAuthors

Dudley Chelton (Oregon State University, USA); Michael Schlax (Oregon State University, USA)

Event: 2019 Ocean Surface Topography Science Team Meeting

Session: Science III: Mesoscale and sub-mesoscale oceanography

Presentation type: Type Oral

Contribution: PDF file

Abstract:

A statistical-equilibrium, geostrophic-turbulence regime of the stochastically forced, one-layer, reduced-gravity, quasi-geostrophic model is identified in which the numerical solutions are representative of global mean, mid-latitude, open-ocean mesoscale variability. A nominal best fit to observed SSH variance, autocorrelation, eddy, and spectral statistics is obtained for dimensional SSH stochastic-forcing variance production rate 1/4 cm^2/d, an SSH damping rate 1/62 1/wk, and a stochastic forcing autocorrelation timescale near or greater than 1 wk. This ocean mesoscale regime is nonlinear and appears to fall near the stochastic limit, at which wave-mean interaction is just strong enough to begin to reduce the local mesoscale variance production, but is still weak relative to the overall nonlinearity. Comparison of linearly-inverted wavenumber-frequency spectra shows that a strong effect of nonlinearity, the removal of energy from the resonant linear wave field, is resolved by the gridded altimeter SSH data. These inversions further suggest a possible signature in the merged altimeter SSH dataset of signal propagation characteristics from the objective analysis procedure.
 

Oral presentation show times:

Room Start Date End Date
The Forum Wed, Oct 23 2019,16:45 Wed, Oct 23 2019,17:00
Roger Samelson
Oregon State University
United States
rsamelson@coas.oregonstate.edu