

Analog data-driven strategies for the reconstruction of altimeter-derived SSH fields

Analog forecasting

ABSTRACT

In this work, we investigate the potential of data-driven strategies to benefit from large-scale simulation/ renalysis datasets with a view to improving the reconstruction of sea level anomalies. We develop an analog data assimilation model for the spatio-temporal interpolation of along-track satellite altimeter data. We demonstrate that a multi-scale decomposition associated with a patch-based representation of the 2D fields can lead to significant improvement compared with optimal interpolation and EOF-based interpolation techniques for case-study region in the South Chinae Sea.

We recently introduced the analog data assimilation (AnDA) [1] as a data-driven « model-free »

assimilation model. Given a reference catalog of exemplars, it plugs an analog forecasting model

into a classic Ensemble Kalman filter or smoother. The analog data assimilation can reach state-of-

Numerical experiments (OSSE) in the South China Sea

ρ

0.81

0.85

0.89

0.96

ρ

0.41

0.45

0.67

0.71

ρ

0.41

0.45

0.67

0.71

Keywords— SSH, along-track altimetry, data-driven methods, analog data assimilation

the-art reconstruction performance when the catalog of exemplars is large enough.

Analog data assimilation (AnDA)

Redouane Lguensat, Ronan Fablet IMT Atlantique, Lab-STICC, Brest, France

Tianfeng Li, Ge Chen OUC, Qingdao, China

Authors

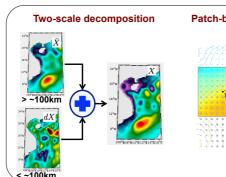
Bertrand Chapron Ifremer, LOPS, Brest, France

Acknowledgments

This work was supported by CNES (OSTST project MANATEE), labex Comnlabs (project SEACS), Teralab (project TIAMSEA) and ANR (project EMOCEAN) and GIS Bretel.

References

[1] R. Lguensat, P. Tandeo, P. Aillot, R. Fablet. The Analog Data Assimilation. Monthly Weather Review, 2017..


[2] R. Fablet, P. Viet, R. Lguensat. Datadriven Methods for Spatio-Temporal Interpolation of Sea Surface Temperature Imaging, 2017.

More details from:

R. Lguensat, P. Viet, M. Sun, G. Chen, F. Tengin, B. Chapron, R. Fablet. Data-driven Interpolation of Sea Level Anomalies using Analog Data Assimilation. https://hal.archives-ouvertes.fr/ hal-01609851.

Associated code

Python code available from https:// github.com/rfablet

Observing System Simulation Experiment:

track altimeter positions in 2014

OI

VE-DINEOF

G-AnDA

PB-AnDA

01

VE-DINEOF

G-AnDA

PB-AnDA

PB-AnDA-dX

PB-AnDA-dX+SST

PB-AnDA-dX+X

PB-AnDA-dX+XG

0.040

0.03

n n2

Simulation data: OGCM, 1979-2012, 3-daily, 1/10°

Reconstruction performance (noise-free case)

Reconstruction performance (noisy case, σ =0.03)

Using additional regression variables (σ=0.03)

RMSE time series

3 24 45 66 87 108 129 150 171 192 213 234 255 276 297 318 339 360

· Real along-track data: Jason2, Cryosat2, Saral/AltiKa, HY-2A along-

Simulated along-track data: simulation of noisy and noise-free along-

track data from 1979 to 2012 using real along-track positions

RMSE

0.026

0.023

0.020

0.013

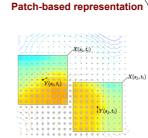
RMSE

0.066

0.060

0.039

0.032


RMSE

0.032

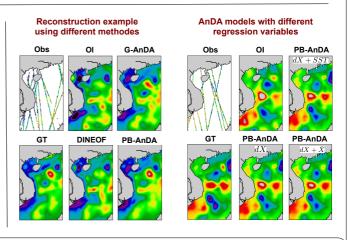
0.031

0.029

0.026

Patch-based AnDA

AnDA may not apply to high-dimensional fields, such as 2D SSH field, due to the curse of dimensionality. We then consider the following **two-scale decompositon of the SSH field**


$$X = \bar{X} + dX + \xi$$

with an EOF-based representation or each patch of the detail field dX:

$$dX(\mathcal{P}_s,t) = \sum_{k=1}^{N_E} lpha_k(s,t) EOF_k$$

As sketched on the left, the large-scale component is estimated using and optimal interpolation. We then apply AnDA to each patch location. Overall, we apply a spatial averaging over overlaping patches to derive the reconstructed field.

Experimental setup: training data (1979-2011), test on 2012 data Evaluation procedure: RMSE and correlation w.r.t. the groundtruth Benchmarked models: Optimal Interpolation (OI), VE-DINEOF, direct application of AnDA at the regional scale (G-AnDA), proposed patch-based AnDA (PB-AnDA)

Conclusion and Future work

This study demonstrates the relevance of data-driven strategies for the reconstruction of SLA fields from along-track altimetry data. We report significant improvement for the proposed patchbased analog assimilation scheme compared to state-of-the-art models.

Future work comprises the evaluation of the proposed framework for different case-study regions especially regarding its sensitivity to key parameters (e.g., the catalog of exemplars) and other altimeter-derived sampling patterns, including future altimetry mission (e.g., SWOT).

Contact ronan.fablet@imt-atlatntique.fr

Webpage perso.telecom-bretagne.eu/ronanfablet