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Introduction

MOTIVATION
Do interactions between internal tides (long-wavelength internal gravity waves) and
mesoscales (slow balanced motions) play a significant role in either tidal or
mesoscale energetics?
ABSTRACT
Output from a high-resolution operational ocean model, AMSEAS, is analyzed to
identify interactions between internal tides, which are high-frequency internal gravity
waves, and mesoscales, the low-frequency balanced motion, in the Caribbean Sea.
Tides are discernable in the SSH at scales smaller than 150km, with contributions
from both the stationary (coherent, phase-locked) and non-stationary (incoherent)
internal tides. Dynamical interactions are analyzed by decomposing the velocity field
into three components: a low-frequency mesoscale, coherent tides, and a
high-frequency residual, and evaluating the Reynolds stresses from the residual. An
initial analysis at a number of sites finds that the lateral Reynolds stress in the tidal
band are not related to the mesoscale rate of strain. However, a correlation between
the mesoscale strain rate and the amplitude of the non-stationary tide is found, which
provides indirect evidence for tide–mesoscale interactions.

The AMSEAS Model

• 3km-resolution implementation of the Navy Coastal Ocean Model (NCOM), covering
the Gulf of Mexico, Caribbean Sea, and Western Atlantic.
• 55 vertical layers – sigma levels down to 550m and z-levels below that to 5000m.
• The one-year period, June 2010 through June 2011, used here.
• Air-sea fluxes (COAMPS), barotropic tides (OTIS), and baroclinic open-boundary

conditions (Global NCOM) are used to force the model.
• 96-hour forecasts produced daily with output archived at 3-hour intervals.

Analysis Methods

• Stationary Tides are computed via harmonic analysis of 1 year of model outputs at
8 dominant tidal frequencies.
• Non-Stationary Tides are computing by subtracting stationary tides and performing

harmonic analysis of diurnal and semidiurnal bands within 96-hour windows.
• Causes of Non-Stationary Tides are inferred from
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refraction by time-varable stratification (δc0), Doppler shifting (Froude number, Fr ),
and refraction by relative vorticity (Ro).
• Potential for Tide-Mesoscale Interactions is measured by
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where S2
0 = a2 + b2 is the squared rate of strain, defined in terms of a = ux − vy and

b = vx + uy ; ω is the tidal frquency; fe = f (1 + Ro/2) is the effective Coriolis
frequency; and φ− θ is the angular difference between the principal axis of the
rate-of-strain matrix (φ = tan−1(b/a)) and the direction of propagation of the tide.
• Reynolds Stresses, τij = −〈uiuj〉, are computed by decomposing the flow into

96-hour average (u, v), stationary tides (û, v̂), non-staionary tides (ut, v t), and a
residual (u′, v ′).

Observed and Modeled SSH and Tides
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Figure 1: Surface expression of M2 in-
ternal tide along TOPEX pass 191.
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Figure 2: Radial wavenumber spectrum, AM-
SEAS.
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Figure 3: AMSEAS stationary M2 internal tide
(quadrature component). Color scale from
−3cm (blue) to +3cm (red).

Figure 4: AMSEAS vs. JASON-1 al-
timeter wavenumber spectra, based on
data from 2002–2009.

Non-Stationary Tides
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Figure 5: Non-stationary M2 amplitude

Figure 6: Possible interaction of inter-
nal tide and mesoscale, near 70◦ W.
Non-stationary M2 SSH is shown with
contours of mesoscale SSH overlaid.
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Figure 7: Hovmöller diagram for 2010–2011
across 14◦N: subtidal SSH (left), geostrophic
relative vorticity (center), quadrature compo-
nent of non-stationary tide (right).

Tide-Mesoscale Interactions Diagnosed from the Rate-of-Strain Tensor

Stability analysis of a plane wave propagating through a non-divergent flow
field indicates a growth rate proportional to the rate of strain, S0. Is there a
correlation between S0 and the non-stationary internal tide?

Ro (color) and ROS axis (vectors)
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Figure 8: Rossby number and principal axis of
rate-of-strain tensor.
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Figure 9: Snapshot of S0/f , the rate of strain
normalized by the Coriolis parameter.
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a) Indep. P(pert M2) × P(S
0
 × mean M2)
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b) Joint P(pert M2, S
0
 × mean M2)
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c) Excess Joint P − Indep. P
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Figure 10: Two-dimensional probabil-
ity density functions (pdfs), At

M2 versus
S0ÂM2. a) The product of the univari-
ate pdfs illustrates the null-hypothesis.
b) The sample pdf. c) Difference be-
tween (b) and (a) indicates correlation
between At

M2 and S0ÂM2.

Reynolds Stresses
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a) Example u−vel time series at 200m
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Figure 11: Representative de-tided u-velocity
(a) time series and (b) power spectrum shows
intermittency of currents and prominence of
near-inertial variability.
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Figure 12: No stat-
stically significant
relation between
Reynolds stress and
the rate of strain has
been found.
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Figure 13: Both
near-inertial motion
and non-stationary
tides contribute
significantly to the
Reynolds stress.

Conclusions

• Stationary and non-stationary tides have been examined in the AMSEAS model.
• A correlation between the mesoscale rate-of-strain and non-stationary tidal currents

has been found.
• Direct evidence of nonlinear interactions diagnosed from Reynolds stresses has not

been found.
• It is hypothesized that the passively-refracted internal tide signal contaminates the

Reynolds stress estimates in the semi-diurnal band.
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