A revisit of global ocean smooth surface conditions and temporal changes using the Topex-to-Jason altimeter time series data

University of New Hampshire

D. Vandemark¹, H. Feng¹, B.Chapron² and J. Tournadre ² ¹Ocean Process Analysis Lab ,University of New Hampshire, NH, USA ²IFREMER/Centre de Brest, France

I. Background

An unanticipated complication for precision ocean altimetry has been the loss of valid ranging data under light wind or smooth water conditions that occur at length scales of 0.1-300 km over 4-6% of the global ocean, and to persist 20-30% of the time in certain tropical and sub-tropical oceans. Originally termed the AGC or sigma0 (σ_0) blooms, these quasi-specular conditions lead to greatly increased levels in the radar altimeter return and they also frequently lead to erratic estimates of range and platform pointing angle. Altimeter measurements under these conditions have been documented, using TOPEX, Jason and Envisat observations (Mitchum et al., 2004; Thibaut et al., 2007;Tournadre et al., 2006). In several respects, the ocean altimeter is better-suited to assess such surface conditions than other available ocean wind observing radar or radiometer systems.

This new investigation revisits the phenomena and its altimeter detection from several new aspects. First we seek to ascertain if long term ocean altimeter datasets can reveal additional information on spatial and temporal evolution of smooth water regions since 1992. σ_0 bloom data from the 10-day repeat altimeter missions, TOPEX to Jason-3, are harmonized to develop seasonal time series across ocean warm pools and then to evaluate interannual change. We are also exploring bloom data for other applications. New approaches to potentially delineate between calm wind and biogenic slick control of such smooth surface conditions, regional coincidence with marine debris and phytoplankton blooms, and the ability of the altimeter to detect predicted wind stress onset are all in the assessment phase.

II. Data and Methods 1 Hz data from altimeters TOPEX and Jasons 1,2,3 (1993–2017) data :|LAT|<=55:Sigma0-Ku>=14 • Backscatter cross section in Ku and C bands, σ_{Ku} and σ_{C} Non - And mar mar • Waveform (WF)-estimated altitude ζ_{wf} • ECMWF model wind speed U_{10} (2000-2017) **Inter-mission calibration of** twoman from σ_{Ku} and ζ_{wf} for high $\sigma_{Ku} >= 14 \text{ db}$, with respect to TOPEX (**Fig.1**) **Two-step bloom identification/search per Mitchum et al. 2004** 음 17 No Bias applied • In 1st step : search all points with $\sigma_{K_{II}} > 14$ dB with a coherence time (or length): termed "bloom duration" • in 2nd step: search there is at least one point $\zeta_{wf} > \zeta_{max}$ where it is 0.3, 0.46, 0.44 and 0.44 for Tx, J1, J2 and J3 respectively.

Statistics of σ_0 blooms identified (Fig. 2)

• σ_0 bloom spatial extent (duration); always > 70 km (10 s)	15.5 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	
• correlation between wind speed U_{10} and σ_{Ku} during events		Duration(s) Duration(s)
• wind speed U_{10} distribution during a bloom	Fig. 1 (top) 1992-2018 monthly WF-	Fig. 2 Sigma0 bloom duration (secs) vs. (a) max
• spatial statistics within events (e.g. gradient,	estimated altitude ζ_{wf} , and (bottom) backscatter σ from TOPEX Jason 1	Sigma $0_{Ku}(b)$ meanSigma $0_{Ku}(c)$ variance of Sigma $0_{Ku}(d)$
mean/max/min/variance of σ_{-} , and $\langle \cdot \rangle$	backseatter O _{Ku} Holli 101 EA, Jason-1, -	correlation between $SigmaO_{Ku}$ and model wind speed, e)
S_{Wf}	2, and -3.	mean $\sigma_{K_{\mu}}$ gradient and f) max altitude ζ_{wf}

100 150 -150 -100 -50

Fig. 3 Spatial distributions of **3a**) **bloom duration** (second), **4b**) **mean wind speed U10** (m/s) during blooms, and **3c**) Variance of sigma0Ku (db²). Note that blooms observed with the duration>10s are included in this analysis, and are averaged in 2° lat- 2° lon bins. In each of figures 3a/3b/3c, three vertical panels represent (**top**) all seasons, (**middle**) austral and (**bottom**) boreal summer averages, respectively. In each panel, the two contours in thick & thin black lines represent high and moderate **bloom occurrences** respectively. Also note that the grayed areas indicate low bloom occurrence regions with < 20 (all year round) and <5 (NH winter and summer) bloom events.

30
93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
Fig. 4 (top/middle/bottom) Time series of avg. bloom duration (in s (40 s~=280 km)) globally (top), N. and S. Hemisphere, respectively.
Note the consistent results across missions
Note the clear seasonality, indicating longer duration in summer

- Note also the **relative stability** at interannual scales

V. Can altimeter detect critical wind speed/wind stress threshold for wind-wave generation near U=2.1 m/s? Does Ku-band show SST impact?

V. Conclusions and next steps Next steps: One goal is to design new approaches to potentially delineate between

References:

First Conclusions

Two decade plus long altimeter (Tx-J3; 1993-2007) data are being used to build up harmonized time series and spatial maps in smooth surface (bloom) conditions and to evaluate spatial-temporal characteristics; consistence amongst platforms is apparent
Collocated ECMWF wind data shows >85% blooms corresponds to low winds<4m/s and longer/shorter bloom durations correspond to relatively higher/lower winds – as expected.

Smooth surfaces (blooms) were identified with distinct statistics of σ₀ and U10 suggesting likely different controls of these smooth conditions => predominantly low-wind, but also other causes.
Bloom condition data show some potential new applications, such as wind threshold change for wind sea growth (Figs 7-8) and bloom mapping to better identify convergence zone behaviors

calm wind and other (biogenic slicks) control of these smooth surface conditions.
Identify 2-4 event classes in terms of selected statistics of blooms, such as duration, correlation of U₁₀ and σ₀, other statistics of σ₀,U10 and ζ_{wf} during a bloom, leading to low wind or biogenic slicks

• Assess identified bloom classes in space/time:

• Collocation with ocean color in time (monthly and seasonal) and space (9km or longer) scales

• 20Hz SGDR data retracking of C and Ku band data for these cases (e.g. Tournadre et al., 2006)

• alongside RAMA, PIRATA and TAO mooring data

Donelan, M. A., and W. J. Plant (2009), A threshold for wind-wave growth, J. Geophys. Res., 114, C07012
Mitchum, G., D. Hancock, G. Hayne, and D. Vandemark (2004), Blooms of sigma0 in the TOPEX radar altimeter data, J. Atmos. Oceanic Tech., 21,
Thibaut, P., F. Ferreira, and P. Femenias (2007), Sigma0 bloom events in the envisat radar altimeter data, in Proc. Envisat Symposium 2007, Montreux, Switzerland 23-27, April 2007.
Tournadre, J., B. Chapron, N. Reul, and D. C. Vandemark (2006), A satellite altimeter model for ocean slick detection, J. Geophys. Res., 111 (C4), C04,004, doi: 10.1029/2005JC003109.
Beans, 2014, First-of-its-Kind Map Details Extent of Plastic in Five Ocean Gyres, EcoWatch, https://www.ecowtch.com/first-of-its-kind-map-details-extent-of-plastic-in-

five-ocean-gyres-1881935191.html)

