

Retrieving soil moisture information from satellite radar altimetry backscatter

Bernd Uebbing¹, Ehsan Forootan^{1,2}, Jürgen Kusche¹, Anne Braakmann-Folgmann¹

Institute for Geodesy and Geoinformation, University of Bonn
 School of Earth and Ocean Science, Cardiff University

Motivation

Soil Moisture (SM) from Satellite Altimetry

- Independent dataset
 - Extend already available data basis
- High along-track resolution
- Nadir-looking instrument
 - Less influence from canopy
- Idea: Prior information from models can be used to constrain backscatter and convert it to surface soil moisture

Overview

- Data
- Backscatter σ_0
- Inversion Framework
- Results
 - Western Australia, Australia
 - Ruhr-Erft Region, Germany
- Summary and Conclusion

Modified from http://www.bom.gov.au

Altimetry, SMOS and Model Data

- Jason-2 and Envisat altimetry backscatter σ_{0}
 - 10 day Jason-2 and 35 day Envisat repeat orbit (~300m along track)
- Australian Water Resource Assessment (AWRA)
 - Daily 5km resolution fields
- Global Land Data Assimilation System (GLDAS-Noah)
 - 3 hourly 100km resolution fields
- Daily Soil Moisture and Ocean Salinity (SMOS) L3 products

www.smos-bec.icm.csic.es

Luigi Renzullo (CSIRO) Albert I.J.M. van Dijk (ANU)

Goddard Earth Sciences Data and Information Services Center

0.30

Data

Backscatter

Land-surface Features

• Backscatter: $\sigma_0 = s + q + \Delta_{atm}$

with scaling factor s, retracking correction q, atmospheric correction Δ_{a}

• Retracking correction: $q = 10 \log_{10}(Pu) Pu = 0$

$$= \sqrt{\frac{\sum_{i=1}^{N} P_{i}^{4}(t)}{\sum_{i=1}^{N} P_{i}^{2}(t)}}$$

OSTST meeting

→ Peaks resulting from off-nadir surface waters disturb the land-surface backscatter signal

• <u>Assumption</u>: Between two cycles, changes in backscatter at a certain location are mainly driven by soil moisture changes

→ use differences
 between successive
 cycles instead of
 absolute values
 (same for model
 data)

Inversion Framework

Principal Component Analysis (PCA)

- Spatial and temporal interpolation of model data onto the altimeter ground track and to the epochs of the satellite crossing the study areas
- The spatio-temporal variability of a data matrix $\mathbf{X}(t,s)$ can be decomposed into normalized principal components $\bar{\mathbf{P}}(t)$ and empirical orthogonal functions $\bar{\mathbf{E}}^T(s)$ using PCA

Inversion Framework

Estimation of Soil Moisture

- Modes from model data $\bar{\mathbf{E}}_{\mathrm{sm}}^{T}(s)$ are used as base functions to estimate the temporal variability $\hat{\bar{\mathbf{P}}}(t)$ by fitting to backscatter $\sigma_{_{0}}$ $\hat{\bar{\mathbf{P}}}(t) = \mathbf{\Lambda}_{\sigma_{0}}^{-1} [\bar{\mathbf{E}}_{\mathrm{sm}}^{T}(s) \bar{\mathbf{E}}_{\mathrm{sm}}(s)]^{-1} \bar{\mathbf{E}}_{\mathrm{sm}}^{T}(s) \sigma_{0}(t,s)$
- Utilize estimated principal components to compute Altimetry Reconstructed Soil Moisture (ARSM, $\mathbf{X}(t,s)$)

Study Site: Western Australia

- Arid, semi-arid climate
 - North: mostly shrublands and graslands, little human influence
 - South: lots of agricultural land use, human influence (irrigation)

Consistency with Model Data

La Rochelle - France – Nov. 2016

Soil Moisture from Jason-2 (C-Band)

La Rochelle - France – Nov. 2016

Soil Moisture from Envisat (Ku-Band)

- Weak dependence of ARSM on the utilized model EOFs
 - Results using ARSM_{EOF-AWRA} tend to agree better with GLDAS model data
- For Envisat, the correlation of descending tracks () show better agreement compared to ascending tracks ()
 - Near perfect 35-day repeat orbit leads to approximately the same local time for each latitude
 - 1am 2am descending
 - 2pm 3pm ascending
 - \rightarrow more stable conditions during the night

Correlation of **Ku-ARSM**

Comparison to SMOS L3 SM Products

- Jason-2 ARSM and SMOS-L3-SM agree well for individual dates, as well as in overall correlation
 - Less agreement over regions with rapidly changing topography
 - Disagreement over Little Sandy Desert likely due to the limitation of AWRA

Transfer to Western Germany

- Correlations of 0.7 0.8 with high resolution model
 data (Wasim) (Carsten Montzka, FZ-Jülich)
 - Influence from seasonal effects (snow) ?
 - Human influence (cities, mining)

Summary and Conclusion

- Satellite altimetry backscatter can provide high resolution along-track information on surface features, especially soil moisture
- The presented inversion scheme utilizes prior information on the spatial variability derived from model data to estimate the temporal variability from the altimetry backscatter
 - Relatively weak dependence on chosen model data
 - Possibility to combine with global low resolution model data (GLDAS), as well as regional high resolution data
 - Results agree well with independently measured SM from SMOS L3 data
- Outlook:
 - Include prior information on canopy variability to improve the separation of the soil moisture signal from the total backscatter
 - Investigate spatial bounds of the along-track PCA