

# From level 2 to higher level water height products for hydrological applications - rivers -

P.Thibaut, L.Zawadski, C.Lacrouts, N.Taburet, G.Dibarbourre<sup>(1)</sup> J.F.Crétaux<sup>(2)</sup>, F.Boy, N.Picot<sup>(3)</sup>

> 1 - Collecte Localisation Satellite 2 - LEGOS 3 - CNES



#### Context : Copernicus Global Land Monitoring Service

- A new Copernicus Service "Cryosphere and Water" has been recently set up by the European Commission and the Joint Research Center delegation
- This service is included in the existing Land Service.

website : land.copernicus.eu

- The "Cryosphere and Water" service includes production and <u>dissemination</u> of operational products
- Based on pre-operational existing services
- The objective is to ensure an European <u>sustained operational core service</u> for fostering emergence of downstream applications





### Context : Copernicus Global Land Monitoring Service

Page 3

# Focus on the Water Level Service

#### Objectives:

- Operational production of Rivers and Lakes water level products
- Both Near Real Time and Long Time series (reprocessing)
- High level products (L3, L4): Multi-mission, Cross-calibrated, Merged
  State-of-the-art service (best algorithms) based on L2 products from Space

Agencies

- Built upon the pre-existing CNES THEIA/Hydroweb system (developed and operated by LEGOS and CLS)
  - At T0, it delivers altimetry times series over rives and lakes
  - Designed to integrate any available altimetry mission (2016-2017: Jason-3 and Sentinel-3)
  - Evolutions towards higher level products: combined, multi-mission water levels



# Page 4

# 1. Improvement of the algorithms



# Altimeter data set improvement

Page 5

□ Conventional Altimetry (past and current missions)

- ✓ Echo characterisation (NN classification)
- ✓ Improvement of the retrackers
- ✓ Improvement of the editing & compression methods (cf Zawadzki & al poster)
- ✓ Use of water surface mask (explained later)

#### □ New Delay Doppler Mode (Sentinel-3)

- ✓ Same topics +
- ✓ Dedicated L1 processing



Page 6

 $S(t) = FFSR(t) \circledast PDF(t) \circledast PTR(t)$ 

(see Jackson 1992; Amarouche 2007; Poisson & Quartly submitted in 2016)

#### Introduction of the mean square slope of the surface (mss)





#### Examples and differences wrt ice-1 retracker





Page 8



http://www.cls.fr



Page 9







# Illustration of the results : Volga river

(Jason-3)





# Sentinel-3 (Volga - Passe 167)

Page 11

Significant improvements will be brought by the Delay Doppler technique (reduced waveform footprint)  $\rightarrow$  an example with CNES S3PP processing (F.Boy)



http://www.cls.fr



# 2. Evolutions towards higher level products: multi-mission water levels

Page 1

#### Altimetry observations at a river bassin scale

#### Brahmaputra (Bangladesh) 250 000 km2

150 M people

In 1998, vast flooding event. 1000 people died 30 M homeless people. 66 % of the country under water. 130 000 animals died.



http://www.cls.fr



Page 1

<u>Jason-2</u> (1 cycle/10 days) 6 intersections



http://www.cls.fr



Page 15

<u>Saral</u> (1 cycle/35 days) 28 intersections





Page 16

<u>Cryosat-2</u> (1 sub-cycle) 24 intersections





Page 17

<u>Sentinel-3</u> (1 cycle/27 days) 20 intersections



http://www.cls.fr



<u>Jason-2</u> (1 cycle/10 days) 6 intersections

<u>Saral</u> (1 cycle/35 days) 28 intersections

<u>Cryosat-2</u> (1 sub-cycle) 24 intersections

<u>Sentinel-3</u> (1 cycle/27 days) 20 intersections

<u>Total</u> (over 35 days) # 80 intersections # 100 measures



Page 1



#### Altimeter measurement densification along the rivers : main steps

The basic idea is to take benefit of the altimeter constellation measurements to provide high level water level products merging all data set (<u>similar to what has</u> <u>been done in oceanography with DUACS system</u>). (already presented in the ESA Living Planet Symp in Prague, 2016, Thibaut & al)

To achieve that aim, <u>we first have to densify the altimeter measurements</u> over each segment of a river (using an optimal interpolation at each position along the river)

- Need to compute a curvilinear abscissa at each point of the river wrt a reference point (at the outfall for example)
- □ Use of a water/land mask (static or dynamic) and skeletonization of the mask
- Segmentation of the river bassin in arms between nodes and leaves
- □ Creation of a oriented graph to connect arms and nodes
- Interpolation of the altimeter measurements on each arm (computation of the Hovmöller diagrams) mono or multi missions (need to intercalibrate the missions)
- □ Take care of the continuity between the different arms (at nodes)



# **Use of a Water Mask**

(SRTM Water Body in this case but any other could be used)

#### SRTM Water Body Dataset (NASA) :

- Water surface contours in shapefile format (vectors)
- Tiles of 1°x1°
- Resolution 30m x 30m
- River width > 183m and lenght > 600m



Management of the central islands and multi bed river



Page 2



#### **Use of a Water Mask**

(SRTM Water Body in this case but any other could be used)

#### Skeletonization of the mask

- Automatic determination of the central line of the river
- Computation of the curvilinear abscissa along the river (15 m res) and witdh at each point
- Reduction of artefacts induced by skeletonization



Page



Page 22









#### Creation of an oriented graph to connect arms and nodes over a river basin





Page 2





### **Curvilinear Abscissa**

#### Brahmaputra River





#### **Hovmöller Saral Brahmapoutra**

Page 29



Hovmöller diagram : each dot represents an altimeter measurement (see Bercher, PhD Thesis, 2008; Tourian, OSTST 2014, Thibaut &al, Hydrospace meeting 2015)
 A more or less sophisticated interpolation method (time/space) (using hydrological models or not) can be applied on each segment





□ The Hovmöller diagram can be derived using one or several mission measurements
 □ Jason-2, Jason-3, Sentinel-3 can be added
 □ HY-2 quality has to be checked even if we already know that its tracker is not optimal, over inland waters
 → Potentially 6 missions



P.Thibaut, «From Level 2 to higher level water height products for hydrological applications», OSTST Meeting, La Rochelle, 2016

Time



#### Multi-missions Hovmöller diagrams (raw and corrected for topography)

Page 3<sup>r</sup>





![](_page_32_Figure_0.jpeg)

![](_page_33_Picture_0.jpeg)

Saral + Cryosat-2

![](_page_33_Figure_2.jpeg)

![](_page_34_Picture_0.jpeg)

# Evolution of the anomalies wrt mean hydrological cycle

- Terrain elevation has been removed
- □ Hydrological cycle has been removed (using SVD filtering)

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

# **Other river basins**

![](_page_35_Figure_2.jpeg)

![](_page_36_Picture_0.jpeg)

# **On-going work**

- Integration of the new missions (S3 and J3) and HY-2 (?)
- Many points have still to be improved in particular heights close to the leaves of the river and arms which are not visited often; continuity between arms, ...
- □ Validation wrt to in-situ measurements (at VS or between VS)

![](_page_36_Figure_5.jpeg)

![](_page_37_Picture_0.jpeg)

# **Conclusions and Perspectives**

**LRM data set can be improved** considering

- a physical solution for the retracker (we recommend the use of a physical numerical Adaptive Retracker)
- □ reinforced editing strategies

SAR altimeter brings significant improvements on the water level precision (with dedicated L1/L2 processing)

Froducts merging all altimeter measurements should/must (?) be considered

Need to validate (wrt in situ) and need to assimilate multi mission products into models in order

- □ to analyze their quality
- □ to improve the hydrological models and related forecasting

All these improvements or evolutions should be introduced in the future in the products delivered by the Copernicus Land Service

![](_page_38_Picture_0.jpeg)

# THANK YOU !!

pthibaut@cls.fr

http://www.cls.fr