

Corsica: linking historical and current missions with Sentinel-3A

P. Bonnefond¹, P. Exertier², O. Laurain², F. Boy³, A. Guillot³, T. Guinle³, N. Picot³, P. Féménias⁴, S. Labroue⁵, M. Raynal⁵

(1) Observatoire de Paris/SYRTE, Paris, France

(2) OCA/Geoazur, Sophia-Antipolis, France

(3) CNES, Toulouse, France

(4) ESA/ESRIN, Frascati, Italy

(5) CLS, Toulouse, France

Only place where the calibration can be performed from 2 independent sites (Ajaccio and Senetosa, distance of ~37 km, ~5 s) on the same track:

- Mitigates geodetic errors
- Almost the same sea state conditions Also link the past and current other missions (T/P-Jason and ERS-Envisat series)

Corsica Multi-mission Calibration Site

Senetosa CNES calibration site established in 1998

- Supports continuous monitoring of Jason-2&3 (and formerly T/P and Jason-1)
- Equipped with 4 pressure tide gauges leveled to the permanent GPS receiver
- Ajaccio configuration established in 2000
 - Supports continuous monitoring of SARAL/ALtiKa (and formerly ERS, Envisat)
 - Fiducial point near Ajaccio equipped with GPS/SLR(FTLRS)/DORIS.
 - Equipped with a radar tide gauge (SHOM) leveled to the permanent GPS receiver
- Corsica multi-mission calibration site: existing facilities also used for CryoSat-2, HY-2A and Sentinel-3A
- **Open-ocean altimeter readings** connected to tide gauges via detailed **local geoid model**
 - Derived from intensive GPS buoy and catamaran surveys along ground track (in 1999 for Senetosa). Extension to Ajaccio (2005) and Capraia (2004)
 - Open-ocean verification locations for GPS-based SSH measurement systems deployments.

SAR altimetry workshop

 Planned connection of the Ajaccio and Senetosa local geoids along the Sentinel-3A track

Data used

• Data sources

S3-PDGS: http://archive.eumetsat.int/usc/ (IPF-SM-2 05.03.16) S3PP: PEACHI V1.0 from CNES

- Sentinel-3A SRAL data processing for SARM and PLRM
 - Correction applied
 - Dry tropo. -> model
 - Wet tropo. -> model (PDGS, radiometer absent, c.f. Anomaly #5*)
 - Iono. -> model (PDGS, dual wrong for some 20Hz (Anomaly #3*) and bias (Notice #3*))
 - SSB -> 3.5% of SWH (PDGS, model absent, c.f. Anomaly #5*)
 - Solid, loading and pole tides

Range bias applied for cycle 2 (PDGS, 59.3mm, c.f. Notice #8*)

- In situ data
 - Ajaccio: SHOM radar tide gauge data in real time
 - Senetosa: pressure tide gauges (data retrieved end of September)

*From S-3 Product Notice S3MPC.PN-STM.001, 25/07/2016

Processing

Sentinel-3A, SAR mode Pass 741, Cycle 2, 2016-04-07 20:54

Absolute SSH biases (PDGS: SARM & PLRM)

- Negligible and very stable difference between SARM and PLRM modes
- Cycle 8 outlier due to erroneous wet correction
- Difference of ~40 mm for SARM and PLRM between Ajaccio and Senetosa (see next slide)

Absolute SSH biases (Senetosa-Ajaccio)

SSH bias differences (Senetosa minus Ajaccio) from PDGS and S3PP

	PDGS SSH bias (mm)	S3PP SSH bias (mm)	Mean (mm)
SARM	+45	+27	+36
PLRM	+41	+37	+39
Mean (mm)	+43	+32	+38

Ajaccio tide gauge:

=> difference of -30 \pm 5 mm found thanks to GPS-tide gauge comparisons This confirms previous results notably with SARAL/AltiKa

Tide Gauge vs GPS comparaisons Ajaccio site, SHOM tide gauge / Senetina site, CNES tide gauges

SAR altimetry

workshop

La Rochelle – France – 31 Oct. 2016

Planned connection between Senetosa and Ajaccio site

- The first step will be realized in 2017 by linking the two existing 1. local geoids at Senetosa and Ajaccio following the Sentinel-3A ground track (see white line).
- In a second step, two lines will be measured on both sides 2. (± 3 km, see magenta lines) of the Sentinel-3 ground track in order to be able to correct the full altimeter footprint from crosstrack geoid gradient.

Two GNSS instruments will be used

CalNaGeo (floating sheet)

SAR altimetr

Cyclopee (GNSS+Radar)

Absolute SSH biases (PDGS-S3PP)

Statistics from PDGS product:

	Range	
	SSH bias / StD in mm	Orbit - Range in mm
Ajaccio		
SARM	-33 ± 20	
PLRM	-27 ± 20	
SARM-PLRM	-6 ± 5	-1 ± 1
Senetosa		
SARM	$+12 \pm 20$	2
PLRM	$+14 \pm 18$	
SARM-PLRM	-2 ± 2	$+2 \pm 2$

Statistics from S3PP product:

	Range	
	SSH bias / StD in mm	Orbit - Range in mm
Ajaccio		
SARM	-22 ± 7	-
PLRM	-63 ±13	
SARM-PLRM	$+38 \pm 9$	+41 ± 11
Senetosa		
SARM	$+5 \pm 6$	2
PLRM	-26 ± 6	
SARM-PLRM	$+29 \pm 9$	$+29 \pm 8$

SARM-PLRM averaged SSH bias differences from PDGS product:

2	SSH bias differences (mm)	Orbit – Range differences (mm)
SARM-PLRM	-4 ± 2	$+1 \pm 2$

No significant difference between SARM and PLRM for PDGS

SARM averaged SSH bias differences from PDGS-S3PP:

	SSH bias (mm)	Orbit – Range (mm)	
SARM	-4 ± 19	-2 ± 4	

SARM-PLRM averaged SSH bias differences from S3PP product:

3	SSH bias differences (mm)	Orbit – Range differences (mm)
SARM-PLRM	$+34 \pm 6$	$+35 \pm 10$

No significant difference for SARM between PDGS and S3PP

+35 mm difference in range between SARM and PLRM for S3PP

8

Conclusion

• Averaged SSH bias from PDGS and S3PP (SARM and PLRM)

(average from Ajaccio and Senetosa with a 30 mm correction for Ajaccio tide gauge)

	PDGS SSH bias (mm)	S3PP SSH bias (mm)
SARM	$+5 \pm 14$	+6 ± 5
PLRM	$+8 \pm 13$	-30 ± 7

- SSH bias equivalent for SARM and PLRM modes for PDGS product
 - ⇒ The SSH is «unbiased » in PDGS product (SARM and PLRM mode) without clear dependency with SWH
 - ⇒ On the same time period, Jason-2 and Jason-3 SSH biases are -10 ±9 mm and -50 ±8 mm respectively (see dedicated presentation on Wednesday at 14:45)
- +34 mm SSH bias difference for SARM and PLRM modes for S3PP product
 - ⇒ The SSH from PLRM is lower by 34 mm in S3PP product (anomaly identified and corrected, reprocessing ongoing)
- Other differences between PDGS and S3PP come from corrections (mainly SSB and wet tropo.)

	Senetosa	Ajaccio
Correction	Mean / Standard Deviation	Mean / Standard Deviation
Wet tropo.	-11 / 43 mm	0 / 53 mm
SSB	+16 / 10 mm	+9 / 13 mm
Sigma0	-2.47 / 0.12 dB	-2.49 / 0.19 dB
SWH	-0.107 / 0.166 m	+0.089 / 0.361 m

Backup Slides

Standard deviation of 20 Hz data

	Mean of StD of 20 Hz (mm)	
	PDGS	S3PP
Ajaccio		
SARM	52 ± 8	59 ± 10
PLRM	52 ± 8	109 ± 14
Senetosa		
SARM	36 ± 4	43 ± 3
PLRM	38 ± 4	81 ± 13
Both		
SARM	44 ± 5	51 ± 6
PLRM	45 ± 5	90 ± 10

SWH dependency

Illustration of sigma bloom

SENTINEL-3A SRAL - Cycle : 3 - Pass : 741

SARM vs PLRM

SENTINEL-3A SRAL (PLRM) - Cycle : 2 - Pass : 741

- ٠
- Not the same slope between SARM and PLRM (~2.5cm over 56km => 0.5mm/km)

La Rochelle – France – 31 Oct. 2016

15

SAR altimetry workshop