

Performance comparison of Sentinel-3 and CryoSat-2 Delay-Doppler (SAR) processing baselines over Open Ocean and Coastal zones

E. Makhoul¹, A. Garcia-Mondéjar¹, R. Escolà¹, G. Moyano¹, M. Roca¹,
 D. Cotton², M. Restano³, A. Ambrózio³, J. Benveniste³

¹isardSAT, ²SatOC, ³ESA-ESRIN

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Introduction

- Study carried out within SCOOP (SAR Altimetry Coast & Open Ocean Performance), ESA-SEOM Programme funding:
 - Characterize expected performance S-3 costal zone & open-ocean
 - Develop & evaluate ameliorations to processing baseline (L1B+L2)
 - isardSAT to develop, implement & test *Delay-Doppler Processor* (DDP) → original + improved S-3 processing baselines

 Preliminary comparative assessment of the S-3 processing baseline against CS-2 for geophysical retrievals [validation exercise]

SAR altimetry

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Methodology

- Inputs:
 - Uncalibrated FBR CS-2 baseline-C
 - CAL1-p2p & CAL2 averaged over a 5-years cycle of CS-2
- isardSAT (ISR) in-house L1B & L2 processors (tuned to CS-2 & S-3 baselines)
- Performance Geophysical retrievals:
 - *ISR L2* a la Sentinel-3 and CryoSat-2: *SAR ocean analytical retracker* [Chris Ray et al.
 2015]
 - ESA L2 a la CryoSat-2: Laxon/Ridout seaice

SAR altimetry

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Delay-Doppler Processor (DDP)

- In-house experience on DDPs:
 - Sentinel-6/Jason-CS GPP;
 Sentinel-3 L0/L1 GPP; CryoSat-2
 DDP

A la Sentinel-6 architecture:

 Stacking + geom. Corr. + range compression → easing validation / integration improvements at stack level

SAR altimetry

workshop

Flexibility & Re-configurability

(*) isardSAT DDP is included as open source in the DeDop platform, further details on presentation: Monica Roca et al. "DeDop: The tool to process altimetry data yourself" at SAR altimetry workshop 2016

Processing baselines CS-2 & S-3

CS-2

- Zero-padding in range of 2
- Along-track Hamming windowing (inter-burst)
- Stack masking of edge beams:
 - Beams with look angle above a given threshold are discarded

 $b \mid -0.6 \ge \theta_{look} (b) \ge 0.6$

S-3

- No zero-padding
- No Hamming windowing
- Stack masking of noisy beams:
 - Beams with noise floor above a threshold are discarded

workshop

 $b \mid \mu_n(b) > \mu_{n,stack} + 3 \cdot \sigma_{n,stack}$

Zero-samples included in the multi-looking

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Analytical Retracker (L2)

• Fully analytical SAR model

(Chris Ray et. al 2015)

 Complete model: 1st and 2nd order basis functions included
 + mapped through LUTs

Synergy with L1B processing

- ZP, window type, stack masking, zeros-method...
- Look angle exploitation →
 model stack
- Pre-processing:
 - Adaptive noise estimation

SAR altimetry

workshop

Initial epoch (thresholdretracker)

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Areas of Interest (AOI)

AOI-1: West Pacific AOI-2: Central Pacific

- Period 2013
- # tracks 375

- Period 2013
- # tracks 360

AOI-3: Agulhas

- Period 2013
- # tracks 517

SAR altimetry

workshop

(*) Single CAL1-p2p & CAL2 applied to all regions and tracks, obtained as a temporal average of all CAL1 & CAL2 products from 01/03/2011 to 30/04/2016

AOI-1: individual results

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) → equivalent to 1-Hz averaging

AOI-1: SSH noise-performance

Source	μ _{RMSE} [m]	σ_{RMSE} [m]
ESA	0.3404	0.2101
ISR a la S-3	0.1093	0.0918
ISR a la CS-2	0.1078	0.0826

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

RMSE 2-D histogram (ISR [S-3/CS-2] vs ESA)

- ISR retracker (analytical SAR ocean) provides improved performance compared to sea-ice ESA retracker
- CS-2 baseline has similar performance (slightly better) compared to S-3 one

SAR altimetry

AOI-1: SWH noise-performance

Source	μ_{RMSE} [m]	σ_{RMSE} [m]
ISR a la S-3	0.3315	0.0493
ISR a la CS-2	0.2706	0.0362

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

- CS-2 baseline improved performance (around 6 cm less noisy) compared to S-3 one
- CS-2 baseline better performance in terms of accuracy (mean RMSE) and stability (std of RMSE) 16

SAR altimetry

workshop

La Rochelle – France – 31 Oct. 2016

AOI-2: SSH noise-performance

Source	μ_{RMSE} [m]	σ_{RMSE} [m]
ESA	0.1760	0.0714
ISR a la S-3	0.0619	0.0168
ISR a la CS-2	0.0594	0.0153

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

RMSE 2-D histogram (ISR [S-3/CS-2] vs ESA)

- ISR retracker (analytical SAR ocean) provides improved performance compared to sea-ice ESA retracker
- CS-2 baseline has similar performance (slightly better) compared to S-3 one

SAR altimetry

AOI-2: SWH noise-performance

Source	μ _{RMSE} [m]	σ_{RMSE} [m]
ISR a la S-3	0.3086	0.0492
ISR a la CS-2	0.2572	0.0441

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

- CS-2 baseline improved performance (around 5 cm less noisy) compared to S-3 one
- CS-2 baseline better performance in terms of accuracy (mean RMSE) and very small improvement in stability (std of RMSE)

SAR altimetry

workshop

La Rochelle – France – 31 Oct. 2016

AOI-3: SSH noise-performance

Source	μ _{RMSE} [m]	σ_{RMSE} [m]
ESA	0.2785	0.1237
ISR a la S-3	0.0814	0.0291
ISR a la CS-2	0.0805	0.0290

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

RMSE 2-D histogram (ISR [S-3/CS-2] vs ESA)

- ISR retracker (analytical SAR ocean) provides improved performance compared to sea-ice ESA retracker
- CS-2 baseline has very similar performance compared to S-3 one

SAR altimetry

AOI-3: SWH noise-performance

Source	μ_{RMSE} [m]	σ_{RMSE} [m]
ISR a la S-3	0.3348	0.0812
ISR a la CS-2	0.3105	0.0760

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

RMSE 2-D histogram (CR-2 vs S-3)

- CS-2 baseline improved very little performance (2 cm less noisy) compared to S-3 one
- CS-2 baseline better performance in terms of accuracy (mean RMSE) and very small improvement in stability (std of RMSE)

SAR altimetry

Impact of Windowing

Outline

- Introduction
- Methodological framework
- Delay-Doppler processor (L1B)
- Analytical retracker (L2)
- Results: Performance comparison
- Conclusions

Conclusions

- Preliminary comparative evaluation of CS-2 and S-3 processing baselines (preparation Phase-2 SCOOP)
- L1B + L2 complete processing chain adapted at isardSAT (refined analytical SAR ocean retracker)
- CS-2 provides an improved estimation noise for SWH retrieval (3 ROIs)
- CS-2 provides slightly better performance in estimation noise for SSH
- No windowing results into side-lobe contamination (noisy beams removal) → performance degradation

Future Studies

- Explore methodologies for noisy beams removal → SNRbased (Peak-to-noise ratio)
- Inclusion of ACDC processing at L1B (improved estimation noise performance)

(*) E. Makhoul, C. Ray, M. Roca, A. Garcia and R. Escolà, "Application and Evaluation of ACDC Delay-Doppler processing over CryoSat-2 for Open-Ocean zones" at SAR altimetry workshop 2016 2

La Rochelle – France – 31 Oct. 2016

Thank you !!

eduard.makhoul@isardsat.co.uk

SAR altimetry

Noisy Beams Removal (I)

- S-3 removes noisy beams as $b \mid \mu_n(b) > \mu_{n,stack} + 3$. $\sigma_{n,stack}$ (statistics of noise in the estimation window)
- Side-lobes contaminate estimation of **noise statistics**
- Removal of few "noisy" beams (even those not at edges & with sufficient SNR)

SAR altimetry

Noisy Beams Removal (II)

- Alternative: estimate noise statistics before SRC (minimize impact of sidelobes)
- Higher number beams filtered out → even those with sufficient SNR
- Alternative is to use windowing (along-track) + strategy based on the SNR (or peak-to-noise ratio/PNR)

SAR altimetry

AOI-2: individual results

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) → equivalent to 1-Hz averaging
2
SAR altimetry

AOI-3: individual results

(*) **RMSE (root mean square error)** computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) \rightarrow equivalent to 1-Hz averaging SAR altimetry

AOI-1: Comparison ESA & Starlab

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) \rightarrow equivalent to 1-Hz averaging

La Rochelle – France – 31 Oct. 2016

30

SAR altimetry

AOI-2: Comparison ESA & Starlab

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) \rightarrow equivalent to 1-Hz averaging

La Rochelle – France – 31 Oct. 2016

SAR altimetry

AOI-3: Comparison ESA & Starlab

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) \rightarrow equivalent to 1-Hz averaging

La Rochelle – France – 31 Oct. 2016

32

SAR altimetry

AOI-1: individual results- sigma0

S-3

SAR altimetry

workshop

(*) RMSE (root mean square error) computed w.r.t smoothed version of the geophysical retrievals over track using a sliding window with a size of 20 samples (surfaces) \rightarrow equivalent to 1-Hz averaging

AOI-1: Sigma0 performance

0.0753

0.0710

Analytical retracker CS-2
baseline provides slightly
improved performance
compared to S-3

workshop

(*) σ_{RMSE} is an indicator of the stability along time/space of the geophysical parameter noise estimation

La Rochelle – France – 31 Oct. 2016

0.1507

0.1488

ISR a la S-3

ISR a la CS-2

AOI-1: gof mean values

Source	$\mu_{ ho_{pearson}}$ [%]	$\sigma_{ ho_{pearson}}$ [%]
ISR a la S-3	99.36	0.0885
ISR a la CS-2	99.47	0.0619

 CS-2 baseline provides a slightly more accurate and more stable fitting of the data compared to S-3

SAR altimetry

workshop

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

AOI-1: gof noise-performance

Source	μ _{RMSE} [%]	σ_{RMSE} [%]
ISR a la S-3	0.2095	0.0464
ISR a la CS-2	0.1430	0.0299

• CS-2 baseline provides a more stable fitting of the data compared to S-3

SAR altimetry

workshop

(*) σ_{RMSE} is an indicator of the stability along time/space of the accuracy on the geophysical parameter estimation

AOI-1: SSH mean error

Source	μ_ϵ [m]	σ_ϵ [m]
ISR a la S-3	0.2036	0.0589
ISR a la CS-2	0.2079	0.0580

 Different retracked epoch as ESA is a sea-ice and ISR is an SAR ocean model
 37

> SAR altimetry workshop

La Rochelle – France – 31 Oct. 2016