

The coastal performance of SAR Altimetry from CryoSat-2 and Sentinel-3

Paolo Cipollini, Francisco Calafat, David Cotton, Jérôme Benveniste

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Rationale

- along-track resolution and high SNR of SAR altimetry are expected to be particularly advantageous in the coastal zone → better precision and possibly better accuracy)
- but precision needs to be verified; accuracy needs to be validated
 - For C-2 this has been done in part in ESA CryoSat Plus for Oceans (CP4O)
 - For C-2 and S-3 being done in SCOOP
- in particular we look at the performance against some 'distance' from coast
- here: results over the British Isles
 domain

C-2 data: two processors

- One full year of data (Nov 12-Oct 13)
- **CNES CPP**: numerical retracker, efficient, not optimized for coastal zone (thanks to F. Boy for providing the data!)
- ESRIN GPOD/SARvatore in a configuration optimized for coastal zone

SAR L1b Processing Options	СРР	GPOD
Hamming Weighting Function	Not Applied	Applied only in Coastal Zone
Beam Steering	Approximated	Approximated
Radar Window Size	Normal (128 bins)	Extended (256 bins)
Range pre-FFT Zero Padding	Not Applied	Applied
SAR L2 Processing Options	СРР	GPOD
SAR Return Waveform Model	Numerical Solution with real antenna pattern & real PTR	SAMOSA 2 with LUT for alpha_p (PTR width)
Delay Doppler Map (DDM) Masking	Applied	Applied

SAR altimetr

Assessing precision

- SSH does not change more than a few mm over ~300 m (except in very rare cases)
- → difference between adjacent 20-Hz SSH values is essentially a measure of the noise

Effect of screening

SAR altimetry workshop

vs along-track distance

vs across-track distance

Validation against TG

- Need to account for the non-repeat orbit of C-2
 - We consider a 'search radius' around the TG and see how the rms difference Alt/TG varies when this radius is changed

C-2 SWH noise

SWH noise - Effect of screening

C-2 SWH distribution

S-3 data

- 1 month of data (06 Apr to 06 May released to S3VT experts for testing
- 'distance from coast' computed by NN interpolation from coarse grid

- → dist_coast not good for coastal analysis
- \rightarrow we had to recompute it

Effect of screening

Conclusions

- S-3 with no specific coastal processing already shows coastal precision comparable to C-2 with specific coastal processing
- It seems possible to derive an useful characterization of the coastal wave field, for instance observing sheltering and shoaling
- Recomm-1: provide distance from coast from precise higher resolution map
- **Recomm-2**: for SAR altimetry it is essential also to provide across-track distance from coast