Impact of the range walk processing in the Sentinel-3A sea level trend

J.Aublanc, S.Dinardo, E.Cadier, M.Raynal, T.Moreau (CLS) F.Boy, N.Picot, C.Maraldi (CNES) P.Femenias (ESA)

OSTST 19-23 October 2020, virtual meeting

Context of the study: Sentinel-3A GMSL trend

From B.Meyssignac presentation at last Sentinel-3 ESL council meeting (September 2019)

- SAR mode processing: A strong drift has been detected on the Sentinel-3A GMSL:
 - +1.7±1.2 mm/yr by comparison to Jason-3
 - □ +2.2±1.2 mm/yr by comparison to AltiKa
- > PLRM processing: S3A GMSL drift is reduced by ~1.4 mm/yr

From JC.Poisson presentation at last OSTST (October 2019)

Sentinel-3A SAR PTR is drifting: a dissymmetry has been detected, not properly accounted for into the ground segment. The estimated impact on SSH from simulation (impact range + SSB) is:

- SAR mode processing: ~ +0.28 mm/yr
- PLRM processing: ~ +0.32 mm/yr

cnes

estimations made on

Sentinel-3A PDGS data

1 – Starting point of the study: differences between S3PP v1.4 & v2.1

2 – The range walk correction

3 – Impact on real data

4 – Rationale for the range walk impact, from simulation analyzes

S3 STM ESL CM#7, 4-5 June 2020

S3PPv2.1 VS	Range walk	Impact on real	Simulation			
S3PPv1.4	correction	data	analyses			
Starting point of the study Evolution of the SAR/PLRM range bias from CLS CalVal analyses						

- S3PP: Sentinel-3 Processing Prototype developed at CNES => a dedicated level-1 / level-2 processing chain of the Sentinel-3 data, fully validated.
- Directly inspired from the CryoSat-2 Processing Prototype: Boy et al. [2017] : « CryoSat-2 SAR-Mode over oceans: Processing methods, global assessment, and benefits »
- > Three level-1 processing modes available:
 - Conventional Pseudo-LRM
 - □ SAR unfocused mode
 - LR-RMC: Low Resolution with Range Migration Correction mode More details in Boy et al. "New stacking method for removing the SAR sensitivity to swell", OSTST Meeting 2017

Only a single year processed in S3PPv2.1, but the SAR/PLRM range bias appears to be

cnes

esa

much more "stable" compared to PDGS & S3PPv1.4

> Even if SAR unfocused & LR-RMC are two very different measures, they share many common

cnes

processing at level-0/level-1 in the S3PP

S3PPv2.1 VS	Range walk	Impact on real	Simulation
S3PPv1.4	correction	data	analyses

What creates the different behavior between S3PP v1.4 & v2.1?

List of major/minor modifications between the 2 S3PP versions

Range walk implementation (SAR & LR-RMC)

- When performing zero-masking at level-2, the « 0 » values brought back by migration are set to thermal noise to make better consistency between L2/L1
- The energy of the DDM beams is set to thermal noise for the gates [112-128], before range migrations, to avoid the shift of aliased er
 An anoma
 The tracka
 Phase var
- > CAL-2 is applied at the beginning of level-0, not after burst alignment (using the FAI) (SAR & LR-RMC)
- ➢ In the level-2, FSSR are updated every seconds (SAR & LR-RMC)
- > Thermal noise is adjusted in SAR mode to make it consistent wrt the number of looks (SAR mode only)
- New waveforms database (SAR mode only)
- > Modification of the model waveform normalization in the level-2 retracking (SAR & LR-RMC)

7

In introduction, reminder of the **SAR unfocused** concept: each 20Hz measurement corresponds to a Doppler band (~300m width) sampled at different satellite look angles

cnes

In introduction, reminder of the **SAR unfocused** concept: each 20Hz measurement corresponds to a Doppler band (~300m width) sampled at different satellite look angles

cnes

Stack after range migrations

Horizontal distance between focusing point and center of burst can reach 8km

<u>Note</u>: to make the illustration, the scheme is out of scale. Spatial distance between two pulses is ~40cm. Horizontal distance between focusing point and center of burst can reach 8km

S3PPv2.1 VS	Range walk	Impact on real	Simulation	
S3PPv1.4	correction	data	analyses	

The range walk correction in summary

- > **Objective:** to compensate the range variation during the burst acquisition wrt focusing point
- The correction depends on the angle between satellite velocity vector & focusing point on ground.
 Therefore the correction increases from central to lateral looks (also depends on radial velocity)
- Because this correction is applied before azimuth FFT (beamforming), it has a direct impact on the 2D Pulse Target Response (as seen later)
- > Impacts on the level-2 estimates from recent studies:

ESA S3CD studies, T.Moreau [OSTST 2017], Sentinel-3A configuration:

□ In average SWH is reduced by ~5cm, bringing SAR mode closer to PLRM

□ A range shift of ~ +0.45cm is observed in SAR mode (computed at the beginning of the mission).

Scagliola et al. [2019], CryoSat-2 configuration:

□ In average SWH is reduced by ~5cm, bringing SAR mode closer to PLRM

SSH difference between SAR unfocused and PLRM is reduced of about 1 mm

OSTST 19-23 October 2020

12

Impact on real data: comparison of SAR range with/without range walk

cnes

<u>Methodology:</u> Over a 2 years time period, each first day of the month, a range bias is computed between S3PPv2.1 SAR unfocused measurements <u>with & without</u> range walk applied

Approximately ~500 000 open ocean measurements (20Hz) integrated each day

Difference between SAR range estimates with/without range walk changes over time Positive drift when range walk processing taken as reference

Range walk application reduces the SAR range drift of ~1.25mm/year

In SWH a ~5cm bias is found, as expected

Evolution of this bias over the time is relatively limited, ~ +2mm over 2 years.

Theoretical Impact through SSB leads to a range drift reduction ~ -**0.03mm/year** (3% of SWH at first order)

cnes

First conclusions

By applying the range walk in the S3PP, results show that:

- > The range drift is reduced by ~1.25mm/year (not accounting for the additional 0.03mm/year through SSB)
- It explains why the SAR/PLRM range bias apparently does not drift anymore in S3PPv2.1
- > Other investigations show that range walk has a very similar impact in LR-RMC mode (wrt rang drift)

2D PTR shape directly depends on CAL1. Subsequently 2D PTR stability over time directly linked to CAL1 variations (width, dissymmetry, variations in a burst...)

The variation of the "distorted 2D PTR" over time is not taking into account by the ground segment (internal path delay)

S3PPv2.1 VS	Range walk	Impact on real	Simulation
S3PPv1.4	correction	data	analyses

How to demonstrate & quantify the impact of the 2D PTR variations over time ?

- > Not possible to directly assess the lateral looks 2D PTR using CAL1 measurements
- Difficult (impossible ?) to assess precisely the 2D PTR stability over time from real data. Transponder signals are not "clean" enough.
- Remaining possibility is to use end-to-end simulator, to reproduce the whole altimetry processing from level-0 to level-2:
 - □ CNES/CLS developed a recent simulator for the Sentinel-6 mission preparation: MADS (Multiconfiguration Altimeter Data Simulator). Fully validated: sub-mm biases in range, cm biases in SWH. Fully adapted to S3.
 - □ In MADS the altimeter pulse compression (level-0) can be replicated using **real CAL1**. **Range walk** is also implemented in MADS, in the dedicated SAR unfocused & LR-RMC processing (level-1).

18

Preliminary result using transponder simulation

- 2D PTR from real data (Scagliola et al. [2019]) not completely symmetric because transponder backscattering changes the 2D PTR shape
- Using simulation, it is possible to generate the theoretical 2D PTR, at different mission periods using corresponding CAL1 from telemetry
- Without range walk, the shape of the 2D distorted PTR changes in the range dimension => This is neither taking into account by the ground segment and LUT

Simulations results not 100% in line with real data. But agreement very close regarding the drift we are seeking!

Several possible explanations:

pulse compression is done on analogic signals by the altimeter, on digital signal by the simulator (x64 oversampled signals)
 SNR evolution not taken into account in simulation

D

- Range walk removes the distortion of the "2D PTR" for lateral looks, and subsequently the waveforms generated are no longer sensitive to variations of the 2D distorted PTR
- But range walk does not correct the dissymmetry of the range PTR. And subsequently its evolutions over time. This is why a remaining drift is measured in both PLRM & SAR in this simulation
- Note: In this simulation this bias could have been corrected at level-2, by the numerical retrackers (LRM/SAR). But it was chosen to model the PTR as a sinc² (for the retrackers) to reproduce the current drifts of the ground segment.
 OSTST 19-23 October 2020

Conclusions

Outcomes

In the S3PP, the range walk application reduces the range drift observed in SAR mode by ~1.28mm/year (time period analysed: July 2016 / July 2018)

Explanation in a nutshell: The level-1 range walk correction prevents from side-effects occurring to the stack lateral looks. These side-effects (2D PTR deformations) vary over time because CAL1 is not stable.

=> Results confirmed recently using GPOD processing: range walk application reduces range drift by <u>~0.9mm/year</u>. Analysis made over a north-Atlantic patch, and a different time period (2016 – 2019)

Most likely

In the PDGS, range walk implementation is expected to reduce the range drift at a similar magnitude. Along with a ~5cm reduction of SWH, bringing SAR closer to (P)LRM.

Perspectives

A range drift remains in SAR mode & PLRM due to the evolution of the PTR dissymmetry (~ -0.28 & -0.32mm/year respectively, from JC.Poisson presentation [OSTST 2019])

Studies still required to fully understand the 2D PTR distortion when range walk is not applied

Status/recommendations for operational Sentinel missions

Sentinel-3

Range walk implementation is planned for fall 2021, using a Chirp Z Transform (CZT). CPU time will be preliminary assessed.

Numerical retracker still recommended to correct for the remaining drift in SAR mode & PLRM due to the evolution of the PTR dissymmetry

=> Both processing (level-1: range walk + CZT ; level-2: numerical retracking) will be implemented and evaluated in the upcoming CNES/CLS Sentinel-6 Processing Prototype (S6PP)

Sentinel-6

Matched filtering "should" provide a better PTR stability over time. Nevertheless, range walk + numerical retracking highly recommended for cautiousness. In particular given the climatologic purposes of the Jason/Sentinel-6 serie. Moreover, range walk still has a positive impact on SWH.

Continuity/consistency with Sentinel-3 to be taken into account

Status on the Sentinel-3A drift

Sentinel-3A SAR mode current GMSL trend: ~5.18 mm/year

(B.Meyssignac presentation at last Sentinel-3 ESL meeting using PDGS data)

Reduction of ~ -1.3 mm/year expected with range walk => magnitude to be refined with PDGS
 -0.28mm/year due to the evolution of PTR dissymmetry (JC.Poisson / S.Dinardo study)

SAR GMSL value updated (projection): ~3.6mm/year

Sentinel-3A PLRM current GMSL trend: ~3.85 mm/year

(B.Meyssignac presentation at last Sentinel-3 ESL meeting using PDGS data)

> -0.32 mm/year due to the the evolution of PTR dissymmetry (JC.Poisson / S.Dinardo study)

PLRM GMSL value updated (projection): ~3.5mm/year (no change)

=> First projections, numbers to be taken with caution

=> To be compared with Jason-3 GMSL once range walk is applied to the PDGS data & PTR dissymmetry evolution effect is removed (using numerical retracker)

=> Values might also change with the PDGS reprocessing

BACKUP slides

Backup slides

Impact of range walk processing on a single oceanic measurement

How to implement range walk in the Sentinel-3 PDGS

IPF part of level-1 processing without range walk

IPF part of level-1 processing with range walk

In the current IPF, the Doppler beam steering & Doppler beam generation are performed in two distinct operations. Directly on the 64x128 pulses matrix (respectively phase shift + FFT)

In the proposed implementation, each range bin is processed separately. The CZT performs in a single operation: Doppler beam steering + Range walk correction + Beam forming

Efficient beam-forming with range-walk correction using the CZT 31

Using the first-order range walk correction, the beam-steering/beam-forming operation writes :

$$S_{k,j} = \sum_{i=0}^{63} s_{i,j} e^{-2j\pi (1 - \frac{\alpha}{f_c} t_j) f_k \eta_i} \text{ with :} \qquad \eta_i = i * PRI \text{ (slow time)} \\ f_k = f_{dc} + \frac{k}{64} * PRF \text{ (Doppler frequencies)} \\ f_k = f_{dc} + \frac{k}{64} * PRF \text{ (Doppler frequencies)} \\ \text{Supposed algorithm (ALT_COR_WAV_06):} \\ \text{Uurrent IPF algorithm (ALT_COR_WAV_06):} \\ \text{use of the FFT} \\ S_{k,j} = FFT(s_{i,j} e^{-2j\pi f_{dc} i PRI}) \\ \text{phase shift} \\ \text{Computational complexity : O(N \log N)} \\ \text{Supposed algorithm :} \\ \text{Supposed algorithm :} \\ S_{k,j} = \sum_{i=0}^{63} s_{i,j} z_k^{-i} = CZT_{A,W}(s_{i,j}) \\ \text{with : } z_k = A W^{-k} \\ \text{Computational complexity : O(N \log N)} \\ \text{Supposed algorithm :} \\ \text{Supposed algo$$

How to implement range walk in the Sentinel-3 PDGS

<u>CPU time preliminary performances</u>

Python-Numpy code, but Numpy functions used are written in C/C++

<u>CPU time for the level-1 operations previously mentioned (Doppler centroid correction + Beam forming):</u>

For a whole track (~200 000 bursts):

- Current IPF: 20 seconds
- + Range walk using CZT: 12 minutes 45 seconds
- + Range walk using DFT (Scagiola et al., OSTST 2019): 2 hours

With the proposed CZT approach CPU time will increase of <u>~12 minutes</u> per track