Hybrid DORIS+GPS measurements processing using the REGINA and DORIS networks and Sentinel-3A Ground beacon and onboard clock corrections

H. Ait-Lakbir, A. Couhert, F. Mercier

Scope of the study

- Current clock corrections in POD DORIS processing
 - DORIS time-tagging: estimated 3-degree polynomials + ground beacon clock biases (referred to TLSB)
 - Orbit determination: frequency offset (df/f), estimated by passes, for all stations
- The common USO used by DORIS and GPS receivers on Sentinel-3x has already been proven to be useful to analyse and mitigate the SAA effects.
 - Idea : use of GPS-based clock corrections on both spacecraft and ground sides ?
 - Onboard side : GPS-based observation of the USO
 - Ground side : GPS-based observation for the DORIS/REGINA stations linked to the same USO (KRWB/KOUG, HBMB/HARB) and provided as products for IGS (.clk files)
- Objectives
 - Assess the impact of the estimation of df/f on station/dynamic parameters
 - Assess the precision on DORIS phase measurements, assuming well-known clock corrections
 - Substitute the estimation of df/f by passes

Using GPS clock corrections Parameterization

$$\varphi = c * \left(T_{rec} + dh_{rec} - (T_{emi} + dh_{em}) \right) - C_{pco,rec} + C_{pco,em} + C_{tropo,dry} + \tilde{C}_{tropo,wet} + \frac{\tilde{df}}{f} * \left(T_{rec} - T_{rec,0} \right) + N$$

	DORIS-derived correction	GPS-derived correction
dh _{rec}	3-degree polynomial, adjusted with pseudo-range	clock correction per measurement epoch, estimated in GPS-only OD - without relativistic effect - corrected of the DORIS/GPS clock offset)
dh _{em}	linear correction, based on RINEX header + adjusted offset (w.r.t TLSB)	clock correction provided in the GNSS constellation solutions, every 30s
$\frac{df}{f}$	estimated per pass	none

Effects of the estimation of df/f Stations parameters

- Limited on vertical positioning
- Slightly improved observability for tropospheric gradients (around 10%)

Relative differences of formal covariances

Negative value means better observability without estimating df/f

Effects of the estimation of df/f Empirical dynamic accelerations

• The empirical parameters are better observed, in particular in the along-track direction (by nearly 50 %)

10-9 m/s²		тсо		TSI		NCO		NSI		TK2	
Reference (POE-F)	Sentinel-3A	0.19		0.19		2.41		2.33		0.29	
	Cryosat-2	0.21		0.20		2.71		2.33		0.38	
Without estimating df/f (test)	Sentinel-3A	0.11	- 42 %	0.10	- 47 %	2.08	- 14 %	2.05	- 12 %	0.14	- 52 %
	Cryosat-2	0.11	- 48 %	0.11	- 45 %	2.28	- 16 %	2.09	- 10 %	0.18	- 53 %

Formal covariance and relative differences to reference parametrization

df/f comparison : DORIS vs GPS

- DORIS and GPS observation of the USO are close within 1e-12.
- DORIS df/f estimation retrieves other sources of errors
 - ➢ Mismodeling of onboard USO
- On the plots:
 - On the upper plot : the frequency offset over a DORIS pass, observed by GPS or by DORIS
 - On the middle plot : the difference between GPSand DORIS-derived df/f (in green), and the degree-2 polynomials fitted on DORIS-derived df/f (orange) and on GPS-DORIS onboard corrections (blue)
 - On the lower plot : the equivalent df/f (for 10s) computed from the difference between the onboard DORIS and GPS clock corrections

df/f comparison : DORIS vs GPS

- DORIS and GPS observation of the USO are close by up to 1e-12.
- DORIS df/f estimation retrieves other sources of errors
 - Mismodeling of onboard USO
 - ➤ SAA effects

For example, the estimation of the frequency offset of Kourou is noisier for Jason-3 than for Sentinel-3A, while the DORIS residuals are similar for the two missions.

Effects on DORIS phase residuals HBMB/KRWB vs TLSB/GR4B (station with "good clocks")

Phase residuals

Effects on DORIS phase residuals GPS vs DORIS-derived clock corrections

Solid : with DORISderived corrections

Dotted : with GPSderived corrections

Using GPS clock corrections Estimation of station parameters

Covariances of parameters

Top : vertical position, Middle : tropospheric gradient in North, Bottom : tropospheric gradient in East

Correlation difference (warm color: the parameters are less correlated with the test)

Using GPS clock corrections Orbit differences

• The change of the ground clock correction seems to have a more significant effect (up to few centimeters)

Using GPS clock corrections Orbit differences – ONBOARD + GROUND side

- Despite the limited number of stations tested within the DORIS network, the along-track performance of the <u>DORIS-only</u> orbit is locally improved and gets closer to the GPS orbit.
- In average over the passes of KRWB and HBMB, it is reduced from -2.60 cm to -0.93 cm (mainly due to the reduction of noise).

Conclusion

• Objectives

- Assess the impact of the estimation of df/f on station/dynamic parameters
 - The impact of the estimation of these parameters is important on the observation of the along-track dynamic errors.
 - It affects the observation of the station parameters in a limited manner. However, the influence on the horizontal positioning has not been considered.
- Assess the precision on DORIS phase measurements, assuming well-known clock corrections
 - The GPS-derived clock corrections lead to the same performances as the current DORIS-derived corrections, in terms of measurements modeling, and even better for high elevations.

• Substitute the estimation of df/f by passes

- > The error in the clock correction explains partly the along-track signatures of the DORIS-only orbit.
- The replacement of the estimated df/f parameters enables to improve locally the orbit performance in the along-track direction
- An even better improvement (up to 50 %) of the observability of along-track errors is expected with more DORIS/REGINA stations with the opportunity to observe the USO by DORIS and GPS.

Back up

Using GPS clock corrections Orbit differences – ONBOARD side

Using GPS clock corrections Orbit differences – ONBOARD + GROUND side

- Despite the limited number of stations tested within the DORIS network, the along-track performance of the <u>DORIS-only</u> orbit is locally improved and gets closer to the GPS orbit.
- In average over the passes of KRWB and HBMB, it is reduced from -2.60 cm to -0.93 cm (mainly due to the reduction of noise).

