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Two broad methods are frequently used to analyze tides: Spectral methods use the energy contained in specific 
frequency bands to diagnose the amplitude of tidal constituents. Harmonic analysis uses a least-squares fit to estimate 
the amplitude and phase of tidal energy at known tidal frequencies (Munk and Hasselman, 1964; Zetler et al., 1965).

The t_tide package (Pawlowicz et al., 2002) is a frequently used harmonic analysis package that uses ordinary least 
squares (OLS) to estimate tidal constituents, with several specialized packages inspired by or built on it (Leffler and Jay, 
2009; Foreman et al., 2009; Codiga, 2011; Matte et al., 2013).

Introduction: Tidal Harmonic Analysis

Ordinary Least Squares:

𝐲 = 𝐇𝐱 + 𝐫

Where:
y = observed data
H = regressor matrix of basis functions (sinusoids at 
tidal frequencies)
x = model weights (unknown)
r = unmodeled residual

The solution that minimizes the variance of r is:

𝐱 = 𝐇𝐓𝐇 (𝟏𝐇𝐓𝐲
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Harmonic analysis of a bottom pressure time series (A, with B as 
the zoomed in gray segment), fit to two tidal frequencies. With 
substantial energy at many constituent frequencies (C), much 
variance remains unmodeled.



Non-stationary Tidal Energy and Structured Noise

Low-frequency processes can modulate tidal peaks such that energy is spread across a band of frequencies centered 
at the tidal frequency. Additionally, at frequencies outside the tidal bands, ocean data tend to be spectrally red, with 
greater power at lower frequencies (Munk et al., 1965). Together, these issues can affect harmonic analysis. OLS does 
not consider prior knowledge of time series statistics, which are often available.

We have developed a new tidal analysis package (red_tide) that addresses the two-fold problem of non-stationary 
variability and structured (spectrally red) noise.

Bayesian maximum a posteriori estimate assuming linear 
and Gaussian statistics

The solution that minimizes the variance of r is:

𝐱 = 𝐇𝐓𝐑(𝟏𝐇 + 𝐏(𝟏 (𝟏𝐇𝐓𝐑(𝟏𝐲

Where:
R = <rrT>, prior (assumed) covariance of r
P = <xxT>, prior covariance of x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Rotary spectrum of surface currents observed by high-frequency 
radar. This is an example of a tidally-driven record with substantial 
non-stationary energy (broad cusps) and an energetic red 
background.



Key Improvements of red_tide over Fourier 
Analysis

• Forced periodicity of model may be mitigated
• Frequency band limitation (band-limiting) eliminated
• Partition of variance between signal and noise may be prescribed, as 

well as the structured of both signal and noise
• Fourier limitations of evenly-spaced times and frequencies are lifted 

(this also applies to OLS)



Illustrative Cases: Step Function

To demonstrate the effects of including prior statistics in 
harmonic analysis, we first analyze a step function. Near jump 
discontinuities, the Gibbs phenomenon is often observed when 
modeled by finite periodic bases. (A) The mitigation of model 
periodicity (and thus large, artificial jumps) by introducing 
additional frequencies. (B-E) Expanded view of jump discontinuity 
under different analysis regimes:

(B) model size <xxT> assumed constant and no frequencies 
above the Nyquist frequency are modeled.

(C) model size assumed to be proportional to frequency-2 (the 
correct structure according to Fourier analysis) and no frequencies 
above the Nyquist frequency are modeled.

(D) model size <xxT> assumed constant and frequencies above 
the Nyquist frequency are modeled. Without correct prior, model 
ambiguity results in large misfit.

(E) correct model size and frequencies above the Nyquist 
frequency are modeled. Gibbs phenomenon is minimized by 
fitting to “unresolvable” frequencies but allocating variance 
correctly using the prior.
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Illustrative Cases Continued: Varied Background Noise

To demonstrate the effects of background noise structured, we 
run Monte Carlo simulations while varying the structure of the 
true background noise and the background noise structure 
assumed by the model. The quantity plotted at the right is the 
normalized standard deviation of M2 model coefficient difference 
from truth across N = 10000 simulations. White circles indicate the 
minimum (optimal) column for each row.

Each panel corresponds to a different “spectral background 
slope”, the slope of the noise component in log-log spectral space. 
E.g. 𝛾 = −1.5 corresponds to r having a spectrum proportional to 
frequency-1.5. The x-axis of each panel corresponds to the prior 
noise slope assumed by red_tide (“none” is the OLS approach with 
no assumptions about r). The y-axis corresponds to record length.

The inclusion of a prior for misfit r results in better estimates 
for x as this prior approaches the true value.



Application to Bottom Pressure Time Series 

The output of red_tide matches that of t_tide when applied to highly stationary tidal records, like the multi-year 
bottom pressure record below. This is a zoom-in of the semi-diurnal band (similar results hold at other energetic 
bands). Notably, at low-energy frequencies red_tide can capture tidal cusp structure. Shading indicates 90% confidence 
intervals on red_tide coefficients.



Work in Progress: High-Frequency Radar Surface Current 
Analysis

Red_tide has been applied to mapped surface 
current records with highly non-stationary tidal 
components (Kachelein et al. OSM 2020). Notably, 
we can estimate the fraction of energy in an 
arbitrary frequency band that can be considered 
“non-stationary”. At right is a map from HFR of the 
fraction of energy in a band centered at M2 that is 
not coherent with the pure M2 constituent.
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