

Observing fine-scale ocean structures in the NW Mediterranean Sea from altimetry, gliders and HF radar

A. Carret¹, R. Morrow¹, F. Birol¹, F. Nino¹, G. Valladeau², F. Boy³ 1. LEGOS/OMP, Toulouse, France 2. CLS, Toulouse, France 3. CNES, Toulouse, France

The NW Mediterranean Sea has distinct ocean dynamics, with relatively strong boundary currents and moderate eddy energy, but with variations at small Rossby radius which are difficult to detect with conventional satellite altimetry. In this study, we analyse the observability of the ocean processes using 3 different altimeter missions and measurement systems, and then compare their observation from colocalised glider and HF radar observations.

Mesoscale observability from Jason-2 Ku band, SARAL Ka-Band & Cryosat-2 SAR mode

Mediterranean Sea : fine-scale dynamics	Different altimetric technologies	Different space-time coverage in NW Med		
A) $44^{\circ}N$ B) EKE $44^{\circ}N$ B) EKE 0.2 0.2 0.3	SAR alongtrack altimetry Cryosat-2 : Ku band	Jason-2 9 tracks SLA – GDR 1Hz	SARAL 31 tracks SLA – GDR 1 Hz	Cryosat-2 316 tracks SLA – CNES CPP 1 Hz & 20 Hz

Conventional altimetry Jason 2 : Ku band Footprint radius : 5-7 km

Alongtrack radius : 350 m

Ka-band altimetry SARAL : Ka band Footprint radius : 3-5 km

Mean spectral results in NW Med

Mean spectral SSH PSD were calculated over the commun 13 month

period 1 Apr 2013 – 30 Apr 2014.

The original spectra have similar slopes down to ~100 km wavelength. Different noise levels for each mission then impact the smaller scales.

After noise removal, the 3 missions are observing similar spectral energy down to 50-60 km wavelength.

Seasonal variations

Seasonal noise levels

Seasonal mesoscale capability

	L	e e e e e e e e e e e e e e e e e e e
70		
/0 -		
60 -		

Figure. A) Position of NW Mediterranean Study. B) EKE from Symphonie 1 km model in W Mediterranean (Estournel et al., 2014).
Position of HF radar at Toulon C) Zoom on Rossby radius scales in winter in NW Med (5-15 km)

Spectral analysis – signal and noise estimates

Calculate average spectra PSD for each mission

(following Xu & Fu, 2012; Dufau et al., 2015)

- 1) Mean spectral PSD calculated for all tracks: data > 50 km from coast
- 2) Noise estimated by horizontal fit to mean PSD between 12 25 km -----
- Noise level removed from original PSD 3)
- Estimate spectral slope (between 50-280 km) -----
- 5) Mesoscale observability scale estimated at the point of intersection \rightarrow

Figure. (Left) Mean spectral PSD for all altimeter tracks in NW Med for the common period. Jason-2 and SARAL 1 Hz data analysed. CNES-CPP processing of CR2 SAR mode data is used, for CR2 20 Hz and CR2 1 Hz. (right) 1 Hz spectra after noise removal.

noise is higher, all missions are detecting ocean scales > 45-50km. **In summer**, when submesoscales are weaker, Saral can detect ocean scales down to 35 km, whereas the higher noise of Jason-2 & Cryosat-2 blocks our observation of scales < 50-55 km wavelength.

Noise levels vary seasonally

for Jason-2 & Saral – higher

noise in autumn/winter due to

higher sea-state roughness

(wind-waves). **CR2 noise** is

relatively stable. Saral has the

lowest noise levels. (Unit : 10⁻³

Mesoscale capability shows

the observable ocean scales

above the noise. In winter,

energetic but the altimetric

when submesoscales are more

m2/cpkm)

Altimetry vs in-situ observations of SSH and currents

Gliders in NW Mediterranean Sea

Many gliders are available in NW Mediterranean Sea from the MOOSE program but only 5 campaigns are colocalised in space and time with altimetric tracks :

→ Campe : $23/09/2012 - 23/10/2012 \rightarrow$ Jason 2

→ Eudoxus : 23/10/2014 – 29/10/2014 → Saral

→ Tintin : $17/04/2015 - 13/05/2015 \rightarrow$ Cryosat 2 & Saral

→ Bonpland : 13/04/2015 – 01/05/2015 → Cryosat 2 & Saral

→ Milou : $27/10/2014 - 13/11/2014 \rightarrow$ Saral

43°N 42⁰N 41⁰N 40^oN 5 ----Campe ----Tintin **Small (fast) mesoscale structures**

Oct 2014, the Milou glider followed a SARAL track and intersected a rapidly evolving small meander (~30 km) at 42.5°N with 30 cm/s currents on 12 Nov, which was not observed by the glider at that location on 10 Nov. Glider and alongtrack altimetry are filtered to remove HF noise. **Poor comparison** between altimetry and gliders.

2 years of HF radar data have been collected near Toulon extending 60 km offshore across the Northern Current. A SARAL track crosses this region

HF radar measures total surface current, but good correlation shows the Northern Current is **mainly** geostrophic.

HFradar currents extracted at Saral dates

Large (slow) Mesoscale structures

Oct 2012, the Campe glider followed a Jason-2 track and intersected a large mesoscale structure (~100 km) with 20 cm/s currents. Good comparison between altimetry and gliders.

Figure. SST on 21 Oct 2012 with Jason-2 currents and 2 glider tracks and currents

Figure. Upper: Time difference of Jason-2 and glider along the track from 0-10 days Lower. Geostrophic currents from glider, alongtrack Jason-2 filtered at 50 km, and gridded AVISO data.

Figure. SST from 9-13 Oct 2014 with SARAL track and position of glider. Dot shows their intersection

Figure. Upper: Time difference of Saral and glider along the track over 5 days

Lower. Geostrophic currents from glider, alongtrack SARAL filtered at 30 km, and gridded AVISO data.

Conclusions

- Strong seasonal variations in altimetric noise, linked to higher surface roughness in winter
- Less seasonal variations for CR2 Why? CPP processing? Limit of **observability** of NW Med mesoscale structures is 45-50 km in winter when submesoscales are energetic; in summer, we can observe down to 35 km with SARAL, and **50 km with Jason-2** (signal & noise both lower)
- Small, rapid mesoscale structures are difficult to observe with **gliders** due to colocalisation issues
- HF radar is promising for its good colocalisation in regions where geostrophy dominates.

Upper : HF radar current anomalies perpendicular to SARAL track at SARAL dates. Middle. SARAL geostrophic current anomalies. Bottom. RMSE of glider-altimeter differences.

ctoh.legos.obs-mip.fr

