

New SLR-based geocenter estimates for orbit centering and impact on altimeter sea surface analysis

N.P. Zelensky¹, F.G. Lemoine², D.S. Chinn¹, B.D. Beckley¹, D.E. Pavlis¹

¹ SGT Inc., Greenbelt, Maryland, U.S.A. ² NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A.

OSTST POD La Rochelle, France November 2, 2016

Issue -

- 1) The Ries 2013 earth Center of Mass (CM) model improves orbit centering and has been adopted in the CNES and GSFC POD standards (Couhert et al., 2014; Zelensky et al., 2014).
- 1) However due to inconsistency, the Ries CM as well as any other available SLR-based model should be used alone, and not with the application of non-tidal station loading. This precludes further orbit improvement in this regard. (Zelensky et al., 2014).
- Our analysis evaluates the determination and use of a CM model consistent with the application of atmosphere pressure loading. LAGEOS-1/2 data are used for CM estimation.

Earth Center of Mass (CM), Center of Figure (CF), Center of Network (CN)

Component: effect on Jason-2 orbit

Annual SLR-based CM Models are fits (CM-CN; Amp*cos(θ-phase))

Annual SLR-based CM Models

(CM-CN; Amp*cos(θ-phase))

Model	X (amp)	X (phase)	Y (amp)	Y (phase)	Z (amp)	Z (phase)
Ries 2013 (15+ years) no APL	2.7	41	2.8	321	5.6	27
L1+L2 (8 yrs) no APL	3.3	50	2.4	303	5.8	46
L1+L2 (4 yrs) no APL	4.0	51	2.4	305	6.6	40
L1+L2(4 yrs) with APL	3.5	60	2.0	289	5.1	61

Note.

- 1) GSFC L1+L2 CM estimates are ITRF2014-based (2008-2015)
- 2) Ries 60-day CM series, GSFC 14-day CM series
- 3) Other GSFC SLR-based CM solutions also included Starlette, Sella, Lares
- 4) APL from Tonie van Dam

Atmosphere Pressure Loading and Improvement in LAGEOS-1/2 SLR Residuals

3 Annual CM models used in Jason-2 POD tests

CM model impact on Jason-2 orbit centering (no APL, no CM Orbit) – (Test Orbit)

Impact on Jason-2 SLR+DORIS orbit centering – dominant Annual signal

Model	X (amp)	X (phase)	Y (amp)	Y (phase)	Z (amp)	Z (phase)
CM Ries	0.6	28	0.8	168	4.2	67
CM no_APL	1.0	32	1.1	189	5.1	55
APL, CM_APL	0.9	26	1.0	180	4.7	48
APL	0.0		0.2	92	1.3	98

Station position improvement ? -Jason-2 DORIS/SLR residuals

Test (080712 – 111231)	Consistency CM / APL modeling	DORIS (mm/s)	SLR (cm)
no APL, no CM		0.3742	0.844
no APL, CM_Ries	yes	0.3741	0.838
no APL, CM_no_APL	yes	0.3741	0.838
APL, no CM		0.3741	0.835
APL, CM_APL	yes	0.3741	0.831

Is the computed orbit origin better aligned with the instantaneous center of mass ?

Comparison with JPL GPS orbits not sensitive to variations in tests – apparently other signal present

Is Jason-2 SLR+DORIS data sensitive to orbit centering improvement? – estimate CM series with Jason-2 SLR+DORIS data

Use Jason-2 SLR+DORIS data with test models to estimate a Residual CM

Use Jason-2 SLR+DORIS data with test models to estimate a Residual CM

Conclusions

• Goal to improve orbit centering and station position modeling with best application of CM, and not necessarily to achieve best definition of CM.

• At present further orbit improvement is precluded in this regard due to inconsistency between available SLR-derived CM models and use of APL.

• Station position modeling improved with CM, and further improved with application of APL.

• Evaluation of Jason-2 SLR+DORIS CM estimates shows orbit centering is most improved when using APL in combination with a CM model derived also using APL.

• Future studies will extend the analysis time series using JP Boy's APL data and 28-day estimates, and include analysis of altimeter data.

Thank you

2016 OSTST, La Rochelle, Zelensky et al

BACKUP

GSFC CM Estimate Modeling of LAGEOS-1/2, Starlette, Stella, Lares solutions

- 0. IERS2010 (pole).
- 1. ITRF2014/Augmented. (stations). Elcut 12 deg.
- 2. GOT4p10 (ocean tides
- 3. Earth Tides. IERS2003
- 4. GOT4p10 (ocean loading).
- 5. Mendez model for SLR troposphere correction
- 6. Tidal EOP
- 7. Tidal Geocenter (GOT4p7).
- Gravity. GOCO2S (static) + TVG (5x5 weekly solutions) +Annual terms from GRACE for L >= 5.
- 9. Adjust opr/along/cross + along-track constant/week for L1 & L2.
- 10. Adjust biases/station/arc (combined for L1, L2) except for thos suggested.in data handling file to use pass-by-pass biases.
- 11. For the combined runs (Lares, L1, L2; Starlette, Stella, L1, L2), the biases were adjusted per satellite rather than combined.
- 12. Atmosphere Pressure Loading applied as specified.

