

British Geological Survey

Gateway to the Earth

Systematic errors in the SLR observations to the LAGEOS satellites and impact on the TRF scale

José Rodríguez¹, Graham Appleby¹, Toshimichi Otsubo²

¹BGS Space Geodesy Facility, UK ²Hitotsubashi University, Japan

© NERC All rights reserved

Outline

A few words about SGF SLR

technique

performance metrics

QC

3. Systematic errors

potential issues

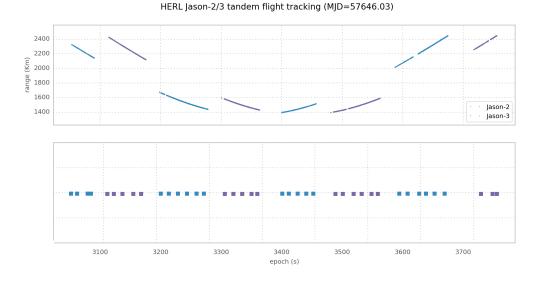
bias estimation

a word of caution

4. Conclusions

Space Geodesy Facility at Herstmonceux

(7840)

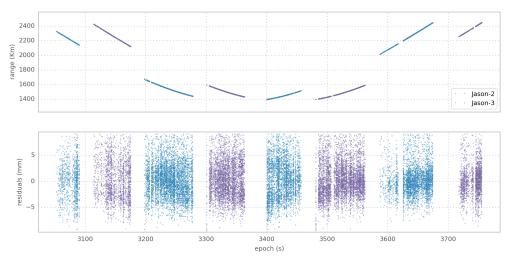

Space Geodesy Facility at Herstmonceux

(7840)

- Geodetic observatory (originated within the Royal Greenwich Observatory) located in Herstmonceux, south of England
- SLR, 3 x AG, 3 x GNSS receivers plus supporting equipment (meteorological and atmospheric sensing)
- Official ILRS Analysis Centre (NSGF)
- Very active and long standing ILRS involvement (Analysis Standing Committe, Networks and Engineering Standing Committee, Quality Control Board, Governing Board...)
- Experience and expertise obtained through development of a very successful SLR station plus involvement in the data analysis activities puts us in a good position to investigate potential systematic effects

Altimetry mission support

Jason-2


4 pass segments 21 NPs 13,111 returns

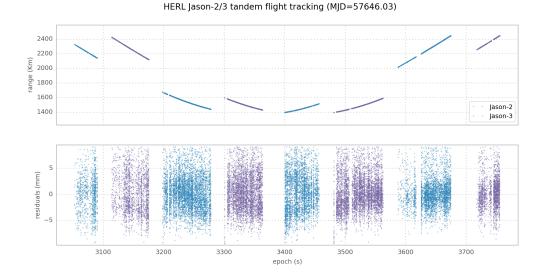
Jason-3

4 pass segments 19 NPs 13,224 returns

Altimetry mission support

HERL Jason-2/3 tandem flight tracking (MJD=57646.03)

Jason-2


4 pass segments 21 NPs 13,111 returns

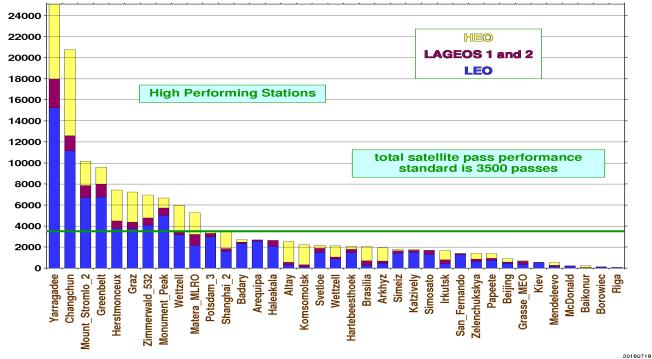
Jason-3

4 pass segments 19 NPs 13,224 returns

Altimetry mission support

Jason-2

4 pass segments 21 NPs 13,111 returns

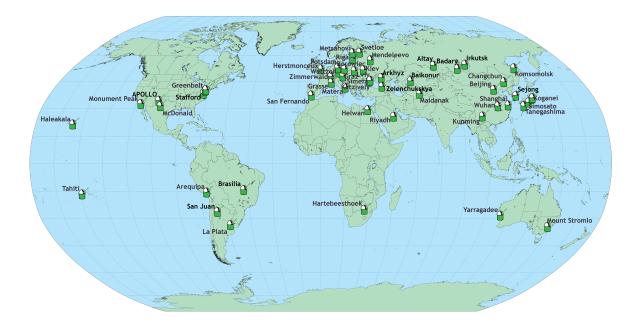

Jason-3

4 pass segments 19 NPs 13,224 returns

	Passes tracked 01-09/2016				
Cryosat-2	173				
HY2A	165				
Jason-2	364				
Jason-3	308				
Saral	168				
Sentinel-3a	146				

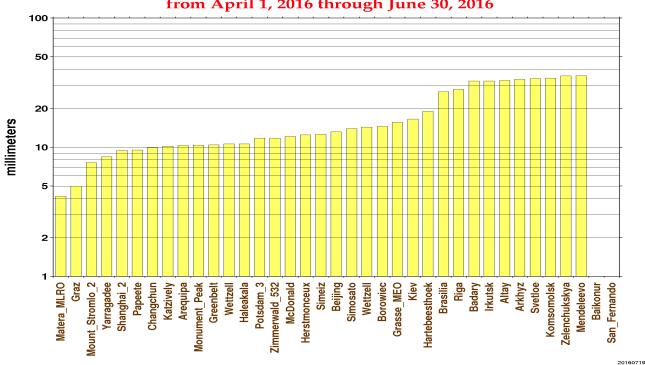
http://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/images/2016_06_tot_pas.html

- Time of flight of laser pulses travelling to and from satellites and tracking stations: simple and elegant idea
- Accurate, unambiguous measurements
- Advantageous propagation channel
- Consolidated ground network being expanded and upgraded
- Fundamental role in ITRS realisation: origin & scale
- Low degree gravity coefficients
- Independent validation for altimetry and GNSS, SRP model testing
- If required, simple to make missions "SLR-worthy": fit a LRA on board



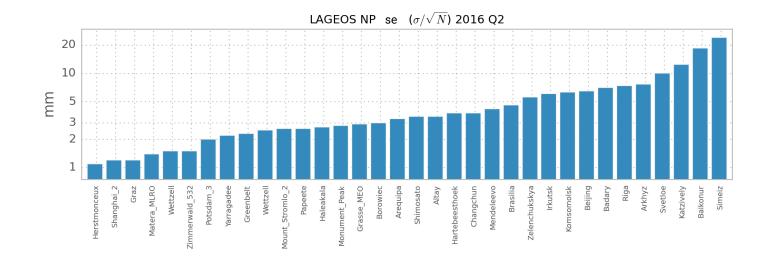
SLR

- Clean (e.g. no clock parameters, no ionospheric refraction, no wet component of tropospheric refraction, no satellite antenna offsets)
- Highly optimised geodetic space segment
- Simple calibration procedure (ranging to surveyed ground target)
- Mostly manned stations: personnel present to detect, report and correct equipment anomalies/malfunction
- Non-standard, heterogenous ground network (technology, mode of operation)
- Weather dependent
- Mostly manned stations: 24/7 operations rare
 - 1 mm geodesy: everything becomes a challenge


ILRS network

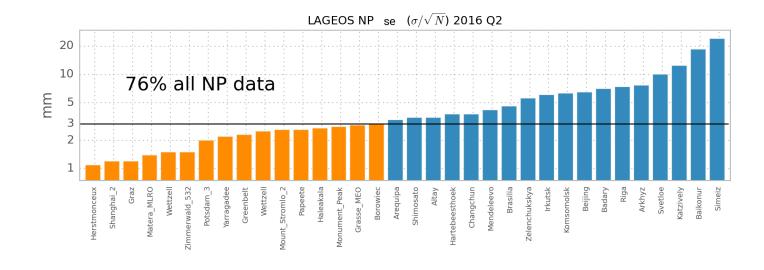
- Improving geographical distribution
- Mixture of modern and legacy systems

Single shot precision


LAGEOS RMS from April 1, 2016 through June 30, 2016

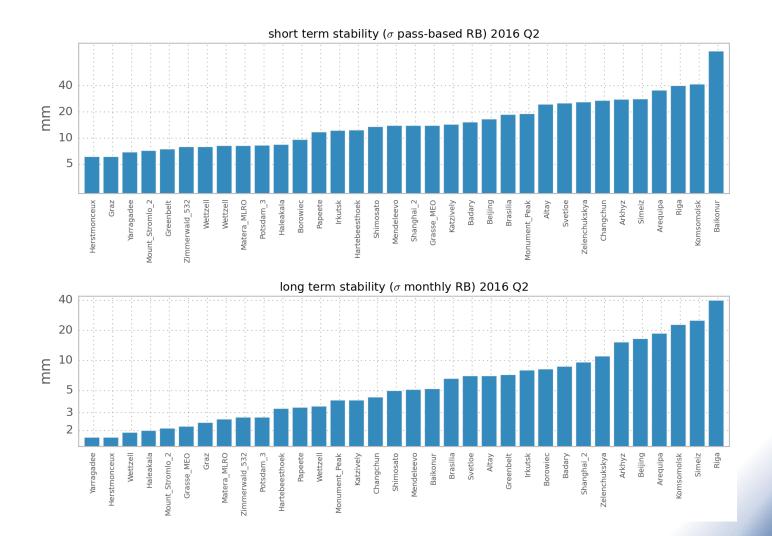
This means different things for different systems; not an actual measurement of precision (e.g. single-photon ranging samples depth of retroreflector array)

(Hitotsubashi University analysis 2016 Q2)


NP precision

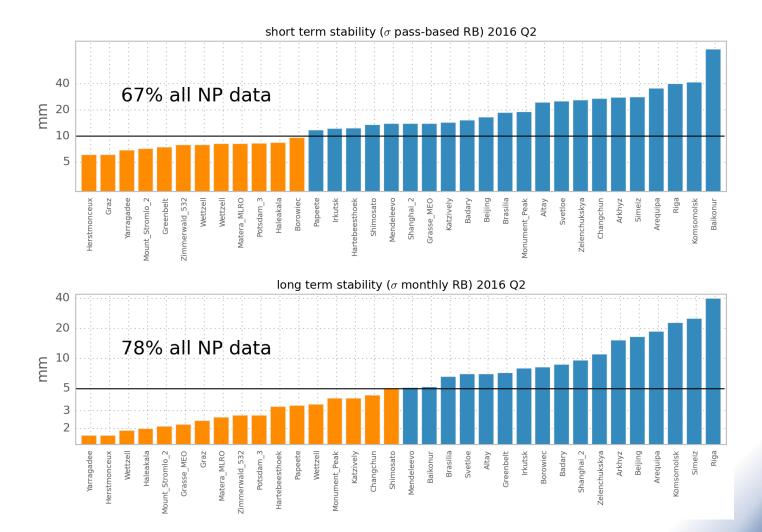
(Hitotsubashi University analysis 2016 Q2)

NP precision



Almost 50% stations (¾ of all data) achieve NP se < 3 mm for LAGEOS

Stability: short- and long-term

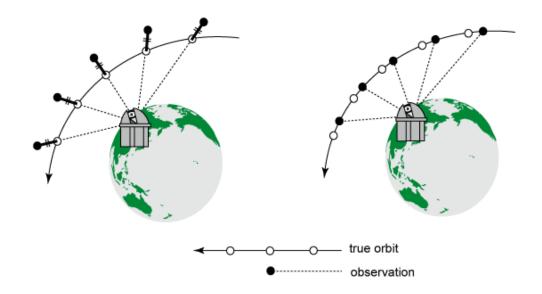

(Hitotsubashi University analysis 2016 Q2)

Stability: short- and long-term

(Hitotsubashi University analysis 2016 Q2)

Almost 50% stations (¾ + all data) achieve long-term stability < 5 mm

Quality Control


- Continuous ILRS-coordinated effort (through Analysis Standing Committee) to monitor network and detect potential issues
- Several Analysis Centres provide QC results/tools:

DGFI: http://ilrs.dgfi.tum.de/quality/weekly_biases/ Hitotsubashi University: ftp://cddis.gsfc.nasa.gov/pub/reports/slrhitu/ JCET: ftp://cddis.gsfc.nasa.gov/pub/reports/slrjcet MCC: ftp://cddis.gsfc.nasa.gov/pub/reports/slrmcc/ SAO: ftp://cddis.gsfc.nasa.gov/pub/reports/slrsao/

• All this on top of ground stations internal QC procedures

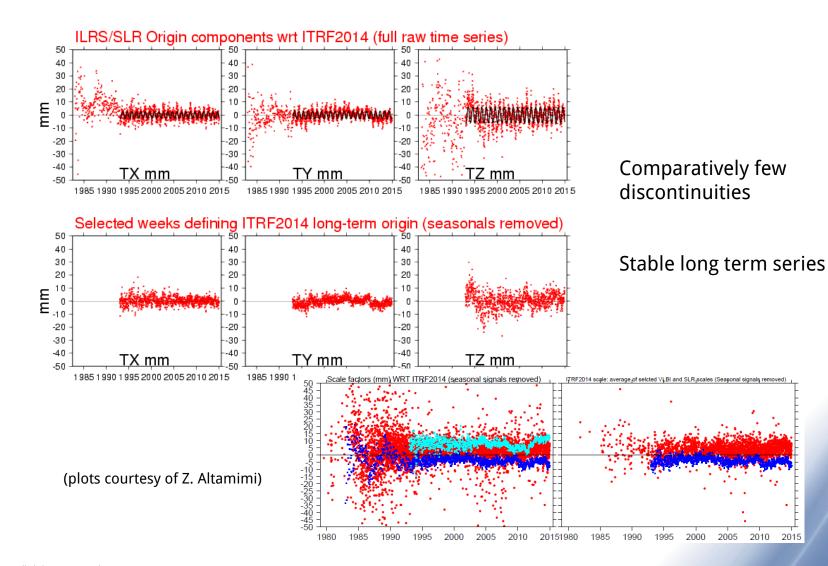
Quality Control

- Example: Hitotsubashi University Quick Quality Check
- 6-hourly reports
- Pass-based range and time bias estimation
- Powerful tool for instant detection of large biases

http://geo.science.hit-u.ac.jp/slr/bias

Quality Control

Data handling file


- maintained by the ILRS ASC, contains information on pressure, range and time biases from SLR stations, plus information on observations to be deleted
- Corrections accumulated throughout many years of monitoring and engineering feedback
- http://ilrs.dgfi.tum.de/fileadmin/data_handling/ILRS_Data_Handling_File.snx

Quarantine procedure

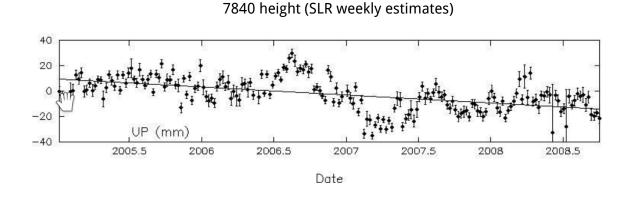
- to avoid transmission of questionable data (e.g. station upgrades or outage) until it is verified by the ASC
- stations automatically quarantined if no data received for 90 days
- stations can declare themselves in quarantine (e.g. planned system changes)

Result of these efforts:

So what can possibly go wrong?

So what can possibly go wrong?

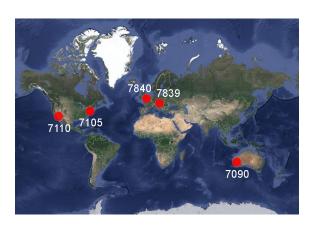
• On paper, not much; in practise, quite a few things:

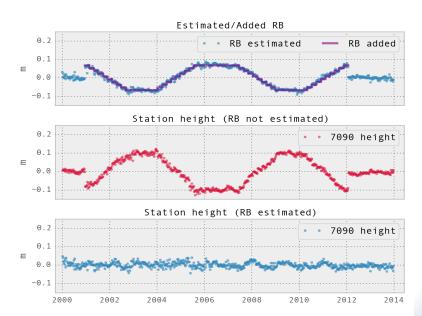

timing devices (non linearities, undetected faults) unreported/unmodelled hardware changes local survey inaccuracies centre of mass uncertainties/mismodelling return intensity dependent effects inconsistent calibration/tracking inconsistent operation other hardware instabilities

• Some of these issues, at the few mm level, may be very difficult to detect by engineers/operators and regular QC analyses

So what can possibly go wrong?

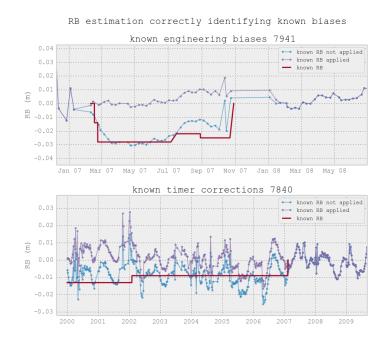
An example:


- Herstmonceux: 2007 upgrade from Stanford counters to event timer uncovered a years-long range bias of ~11 mm (>_<)
- Initially unnoticed, problem was detected by analysis of estimated range bias time series
- What is there to assure us that similar issues did not affect other stations?



- Abandoned idea of untouchable "core sites": errors could be anywhere
- Computed weekly solutions, compatible with regular ASC product, estimating RBs for all stations at all epochs
- Extensive testing performed:

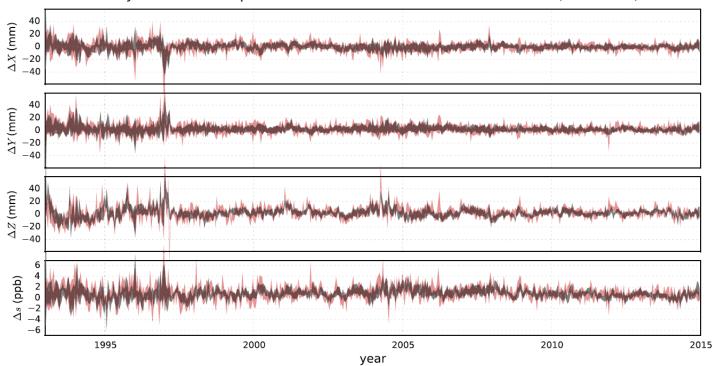
- Abandoned idea of untouchable "core sites": errors could be anywhere
- Computed weekly solutions, compatible with regular ASC product, estimating RBs for all stations at all epochs
- Extensive testing performed: recovery of added RBs



Addition and recovery (simultaneously) of synthetic biases to/from a group of stations

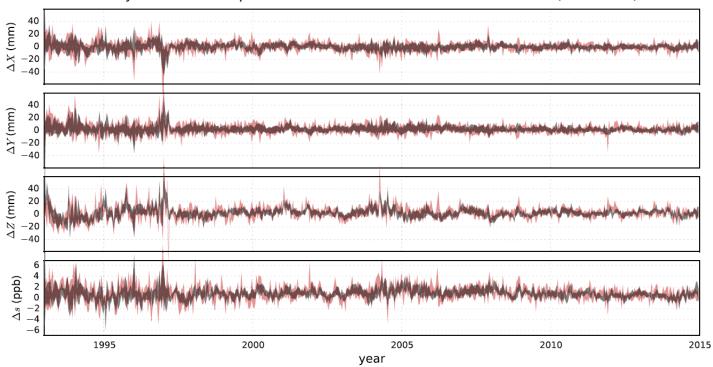
- Abandoned idea of untouchable "core sites": errors could be anywhere
- Computed weekly solutions, compatible with regular ASC product, estimating RBs for all stations at all epochs
- Extensive testing performed: identification of known issues

Identification of known issues included in data handling file (e.g. events at 7840, 7941)



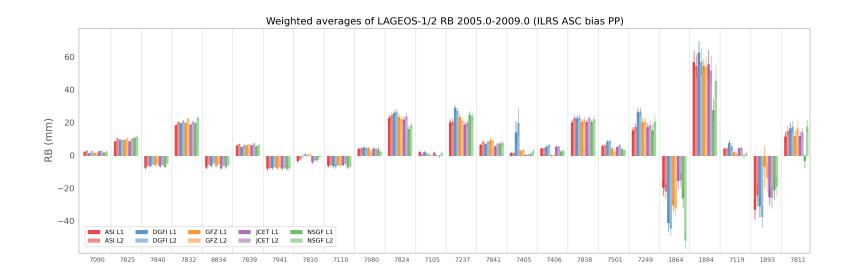
- Abandoned idea of untouchable "core sites": errors could be anywhere
- Computed weekly solutions, compatible with regular ASC product, estimating RBs for all stations at all epochs
- Extensive testing performed: recovery of added RBs, identification of known issues, testing a priori coordinates
- Studied mitigation of increased solution noise
- Indirect test on GM and scale factors between orbits, TRF, GM

Details in:


Appleby G., Rodriguez J., Altamimi Z.: Assessment of the accuracy of the global geodetic SLR observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014; J Geod, 2016

Weekly transformation parameters between RB and standard solutions (all stations)

Weekly transformation parameters between RB and standard solutions (all stations)


Transformation parameters between regular and RB solutions

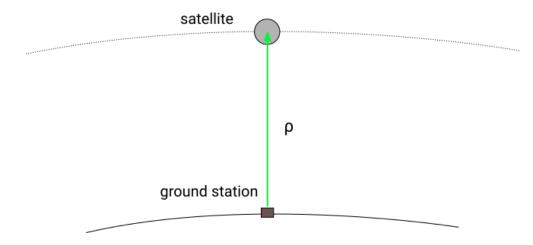
	ΔX (mm)	ΔY (mm)	ΔZ (mm)	Δs (ppb)	Epoch (y)
RE	0.3	1.1	2.2	0.72	3:362
	0.7	0.7	1.6	0.13	
Rates	0.0	-0.2	-0.1	-0.01	•
	0.1	0.1	0.3	0.02	

~0.7 ppb scale change towards VLBI

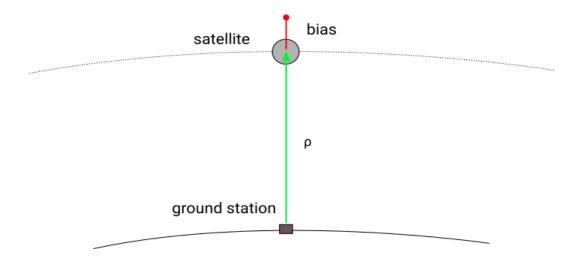
ILRS ASC pilot project on systematics

- Aimed to establish operational solution incorporating RB estimation
- Initial results available: excellent inter-AC agreement (and with external studies 1)
- Scale changes corroborated independently
- Satisfactory combination of RB solutions (ASI Combination Centre)
- Official product in the future, as combined solution of all ILRS ACs

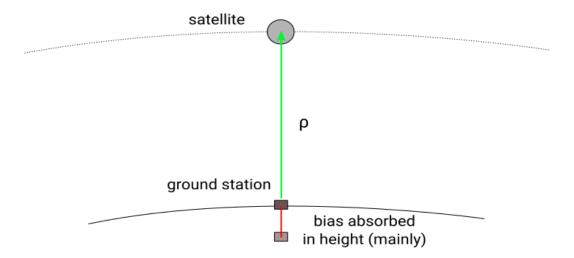
¹**Reinquin F., Couhert A., Bruinsma S**: *Ranging error determination using geodetic satellites in support of altimeter missions POD;* 20th ILRS Workshop on SLR, Potsdam, 2016



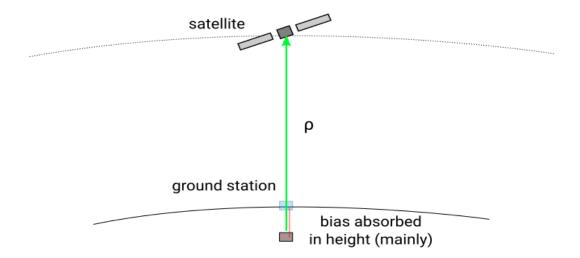
1. TRF/error estimates inconsistency


1. TRF/error estimates inconsistency

Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)


- 1. TRF/error estimates inconsistency
 - Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

1. TRF/error estimates inconsistency


Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

1. TRF/error estimates inconsistency

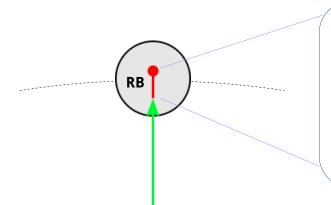
Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

1. TRF/error estimates inconsistency

Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

2. Transferability of range biases

Part of estimated range errors may be target-specific


1. TRF/error estimates inconsistency

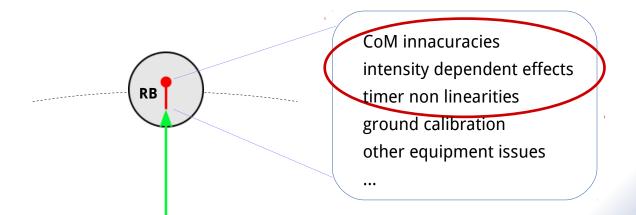
Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

...

2. Transferability of range biases

Part of estimated range errors may be target-specific

CoM innacuracies intensity dependent effects timer non linearities ground calibration other equipment issues



1. TRF/error estimates inconsistency

Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

2. Transferability of range biases

Part of estimated range errors may be target-specific

1. TRF/error estimates inconsistency

Can't "correct" observations with new error estimates while fixing coordinates to current frame (must wait for ITRF2014+)

2. Transferability of range biases

Part of estimated range errors may be target-specific

ILRS ASC job to assess, identify and minimise this possibility (multi-satellite combinations/comparisons, improved CoM modelling, knowledge of system behaviour and mode of operation)

Take home message

- ILRS performs extensive QC at various levels to ensure maximum product quality
- Taken significant steps forward to identificate, estimate and mitigate systematic errors and their effect on SLR observations: *absolute accuracy*
- Official error estimates product planned (and future reanalysis)
- More than 50% scale difference between SLR and VLBI explained
- Network improvements forthcoming (e.g. deployment of new NASA network) and system upgrades (towards high-repetition, low-energy, single-photon operation systems)

