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INTRODUCTION: OBSERVED AND SIMULATED LOW-FREQUENCY SEA-LEVEL VARIABILITY IN THE GLOBAL OCEAN

How accurate LF SLA variability is hindcasted by OGCMs ?

Intrinsic variability

Experimental strategy

Ocean Global Circulation Models (OGCMs), as they get finer in resolution, get more
realistic: they are able to reproduce with a remarkable accuracy the observed Low-
Frequency (LF > 1 year) variability of Sea Level Anomaly (SLA) measured by satellite
altimetry (AVISO) [1].
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- Two types of simulations:

Our turbulent laboratory: NEMO 1/12° (eddy-resolving OGCM)
* The T-experiment simulates the total variability and it is used as a
* The I-experiment aims at isolating the intrinsic variability.
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Why focusing on the Western Boundary Currents (WBC) ?

T-experiment From Sérazin et al., [1]
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Usual paradigm (but NOT totally TRUE):
* Basin-scale wind stress curl variability via the linear oceanic Rossby -EIW T

wave adjustment drives WBC LF variability [2].

Lessons learned from OGCMS:

* WBC regions exhibit LF SLA intrinsic variability on a wide range of

spatial scales in a realistic tfurbulent ocean [1].

* Intrinsic Kuroshio modes might be triggered by the atmospheric

forcing via Rossby waves [3].
Lessons learned from idealized models:
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* Jets might "coherently resonate” under an external forcing [5].

Low-frequency (<1 yr) Large-Scale (>12°) SLA STD in the l-experiment

INTRINSIC MODES OF VARIABILITY IN THE KUROSHIO AND THE GULF STREAM

Spatial structure of jet modes A focus on the Kuroshio: application of the turbulent oscillator [6]
EOF decomposition of the zonal jets into 2 modes (10°x10° box): Key state decomposition: Cross-wavelet analysis:
, A) Migration of the jet to the North * In the I-experiment, PCl is in positive quadrature phase with PC2 in the band 8-
* Kuroshio < Gulf Stream: e o . . . . .
, , , B) Intensification of the jet 10 year, consistent with the turbulent oscillator paradigm [6].
— Mode 1: Displacement of the SSH gradient & Jet displacement . . . L . . , o ; :
, C) Migration of the jet to the South * Similar result in the T-experiment: the intrinsic coupling between PC1 and PC2 in
— Mode 2: Increase/decrease of the SSH gradient « Jet . . . . . :
, e L , D) Weakening of the jet this frequency band might be robust to the atmospheric forcing.
intensification/weakening
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