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Study area: South Atlantic Bight (SAB) Validations with independent current measurements
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Applications: Estimate the cross-shelf transport

Figure 6. Unique geometry of ground tracks in SAB provides two crossovers

2004

J A J O Jyano2 Jan04 Jan
Month

e _ _ ) (a). The divergence of the along-shelf transport at two crossovers (b, North-
Geostrophic VE|OCity anomalies blue; South-red) is used to estimate the cross-shelf transport (c, d), which is

then compared with the river discharge (c, d) and the offshore salinity (c).
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Figure 4. Geostrophic velocity anomalies spatial variation using 7-point linear
regression. (a) Velocity variation (red) increases towards the coast and the
shelf break. (b) velocity anomalies seasonal cycles and residues (c) after the
removal of seasonal cycles.

What we understand so far:

1. Along-shelf currents:
* Altimeter-derived velocities are comparable with independent

variance [m%/s7] 0.4 0 0 umis] 03 o o3ulms current measurements
D B c T 1  Wind (Ekman component) is important in the SAB
20'% 2. Cross-shelf transports:
R | B T R D R A * Maximum offshore transport occurs during the summer time,
% MK | | |||||||§ ' i 1| I ” 'N' ||| I i ” 1 | || - Iliilll’ II[ driving the offshore low salinity.
77 ] | | ' w M N " | | ) . r “ * The concurrence of offshore transport and high river discharge
; e I . f | ‘ 1 |‘ | might play an important role in determining the physical and
5 ™ | o[} EI AR 'I i | |{ biological characteristics in the SAB.
il SO _ ’ | | h | ’ ‘ | Acknowledgements: Support for this research provided by NASA
o NG 1 | | | H|t | | ti \ ﬂ| (NNX13AD80G) is gratefully acknowledged. Altimetry data used in this study
1°°owater3'gpth o0 AMo:JnthCI) S S s JT;?  Jamo uamz  yama | were developed, validated, and distributed by RADS. We also thank P. Ted

Strub and Laxmikant Dhage at OSU for discussions and sharing matlab codes.

New frontiers of Altimetry — :
Lake Constance, Germany - October 2014 > OSTST meetlng




