あえ信息ンジスタ 海洋科学学院 National University of Information Sciences

Up-to-downwave asymmetry of CFOSAT SWIM fluctuation spectrum for the direction ambiguity removal

Huimin Li¹, Daniele Hauser², Bertrand Chapron³, Frederic Nouguier³, Patricia Schippers², Biao Zhang¹, Alexis Mouche³ and Yijun He¹

> ¹ School of Marine Sciences, NUIST, Nanjing, China ² LATMOS, CNRS, Guyancourt, France

Background

(のまはなこだナキ

- Surface Waves Investigation and Monitoring (SWIM) on board the China-France Oceanography Satellite (CFOSAT) was launched on October 29, 2018.
- SWIM, the ever first spaceborne wave spectrometer, has one nadir and five rotating beams at near-nadir incidence(0° to 10°).

5.7 r

- SWIM is able to measure the directional wave spectrum of ocean waves between 70 m to 600 m
- at global scale.Footprint of the near-nadir beams is 18 km.
- Radius of the 10° beam is about 88 km.
- The azimuth angle bin is ~7.5° and the range
- spacing is ~8 m after on-board processing.

Fluctuation spectrum

🔄 t x (i & 2 5i +

- The two-dimensional fluctuation spectrum is then constructed by combining all the azimuths angles within one entire rotation of 360°.
- An example of fluctuation spectrum is given for 6°, 8°, 10° with the collocated WW3 wave spectrum presented for comparison.
- High speckle noise is observed in the along-track direction.
- o Spectral level decreases with increasing incidences, consistent with theoretical results.

for all three spectral beams of 6°, 8°, 10°.

_			
-			
-			
-			
-			
-			

Up-to-downwave asymmetry

🔄 t x (i & 2 5i + #

• A ratio between the ambiguous parts is defined to represent the up-to-downwave asymmetry of the fluctuation spectrum *P* :

$$RT_P = \frac{P_{[0^\circ, 180^\circ]}}{P_{[180^\circ, 360^\circ]}}$$

where $P_{[0^\circ, 180^\circ]}$ is the wave part in the directions of $[0^\circ, 180^\circ]$ and $P_{[180^\circ, 360^\circ]}$ is in $[180^\circ, 360^\circ]$.

RT_p is so defined that it only quantifies the relative magnitude of the ambiguous parts.
 It represents the down-to-upwave ratio, true wave direction is within [0°,180°]; the up-to-downwave ratio, true wave direction is within [180°,360°].

3

Statistics of *RT_p* • Box plot of *RT_p* relative to the collocated WW3 wave peak direction is given for all three spectral beams.

- The up-to-downwave asymmetry is evident for all three beams, featured by the *RT_p* smaller or greater than 1 w.r.t. the wave direction.
- ✓ When φ lies in [0°,180°], RT_P corresponding to the down-to-upwave ratio is smaller than 1, confirming the lower fluctuation spectra at downwave direction.

-															-
3.5	Fluctuation spectrum														
1.08C.081 (1.081)		(a)	θ.	6.			N = 637								r
ž	1									н		т			
j 2.5	1										т			т	
\$ 2.0	1									ĂЧ	'н –		L :	r I r	511
÷15	łτ						T	Т	Ιň	ΗТ	Ϋ	. A b	Η,	ԼՈԼ	
÷ 1.0	#	+	÷	-T		4-	T	<u> </u>	- 14	ų.	<u> </u>	부부	Y I	յել	
Ê 0.5	JD	İ	Ð.	¢₿	¢	۴I	ΑŲΥ	ų į	₽ ₽	1		^			
0.0	IΥ	¥	1	11		÷.	T ~ 1		11			-	1.		L
0.0	ò					90			180			270			360
3.5	-													_	_
= 3.0	1	(b)	0:	8.			N = 865							1	r
- 3.0 										T		т			
Ê 2.0							- T		t			IT	T.		
5	1						Ť	Τ.	1	Ĺа		ήI	11	l l r	511
2 1.5	1.	T		- т			一人白	11	ĺΗ'n	ЧH	n d	ιЦΓ	l H r	ъHЬ	
° 1.0	壮	÷	÷	++	+	÷			1-4-4		P -1	Τh	-T-1	- 4-4	
Ê 0.5	ιĦ	Ų	Ĥ.	부부	ιĦ	٥	• U ĭ	Υï	ſ '		1	1 1		- 1 - 1	
0.0	Ц	1	1	1 1	1	-	1 1	1 '	·					1.	<u> </u>
	Ó					90			180			270			360
3.5	Г	(c)	0.	10.			N = 953		T						
2 3.0	1											Т	H.		
22.5	-										I		11 r	541	
1.00(-2.5 0(-2.0	-									I	ΙĻ	. 1. 1	111	IIIr	511
1.5	١.	т							- 1 H	ΗŪ	ΙήL	Шť	ιΗL	JHI	
	11		T	тт	T		T	τÌ	I İ H	ЦH	ΙΨÇ	막다	IΨ[111	111
1.0	枯	市	Ó	66	¢	L	ΔĂĤ	Ъſ	1911	ΤŤ	-T-4	1	1	1-1-4	7
€ 0.5	۱H	Ų	Υ.	77	1	Å	744	91	7 + U	1 °	^	1		ΙΨ	
0.0	÷	1	*			90	1 1 1	1 1	180			270			360
	×.					~	ww	3 wav	e direction	[Deal		210			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Ambiguity removal	الله بر المالي الم										
 Here we present the preliminary results of wave direction ambiguity based on the up-to- downwave asymmetry of the fluctuation spectrum. 											
 ✓ Quality results of three beams show the potential of such algorithm ✓ In terms of the bias and standard deviation, the 10° beam displays to 	the best performance.										
	(c) 0 = 10 · · · · · · · · · · · · · · · · · ·										
	40 120 110 240 300 360 Detected GNM mark direction (David										

Strik2174

Conclusion Summary

- An up-to-downwave asymmetry of SWIM fluctuation spectrum is observed with lower spectral level at downwave parts;
- \circ $\;$ This asymmetry is well quantified by the spectral ratio;
- The preliminary results of ambiguity removal based on this spectrum asymmetry are promising for further explorations from an operational point of view.
- Perspectives
 - The lower spectral level at downwave parts contradicts the modeling expectation that greater MTF at downwave is supposed to result in greater spectrum;
 - Dedicated efforts into the SWIM measurements principle are still required.

5 1 2 12 4 2 11 7 4 Harry Change & Harrison & Harrison

Thanks for your attention !

E-mail: Huimin.li@nuist.edu.cn