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Background:

The global, multi-mission-merged, AVISO SSH product has become a
backbone for the past mesoscale oceanic variability research.

Due to the need for spatial uniformity, the effective horizontal resolution
of the AVISO gridded product is O(150-200km) (e.g., Chelton et al. 2011;
Ballarrotta et al. 2019).

With the reprocessing of along-track altimeter data, we have now
improved fine-scale along-track SSH data with lower noise levels
(Morrow et al. 2018).

During the next OSTST, we will also have the wide-swath 2-D SSH data

from the SWOT mission that will improve the measured SSH resolution
down to O(15km).

In this presentation, I'll provide a brief review on:

1. What dynamic signals are at the 15~150km wavelengths?
Are they geostrophically balanced?

2. Dynamic relevance of the fine-scale SSH signals: EKE pathways

3. Importance to the upper ocean vertical circulation/transport



J2-along-track vs. AVISO-gridded SSH power spectrum comparison
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Are these fine-scale SSH signals geostrophically balanced?



Are SSH signals in sub-150km range geostrophically balanced?
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e Several studies have used repeat
ADCP surveys to determine the
transition scale: Lt

e Ltis spatially inhomogeneous;
smaller at where regional
mesoscale EKE level is high



Are SSH signals in sub-150km range geostrophically balanced?
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MITgcm-based Lt (Qiu et al. 2018)

e Several studies have used repeat
ADCP surveys to determine the
transition scale: Lt

e Ltis spatially inhomogeneous;
smaller at where regional
mesoscale EKE level is high

e Lt was also evaluated globally
using the 1/48° MITgcm simulation
that includes tidal forcing

e Lt <30km in WBC & ACC
regions; exceptions appear in EAC
& in ACC areas with prominent
topographic features

e In temperate latitudes (i.e.,
STCC bands), Lt = 50~100km

e Lt > 150km in broad tropics
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SSH-based Lt from J2 (2008-2016)
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MITgcm-based Lt (Qiu et al. 2018)

J2-alongtrack-SSH-based Lt
(Vergara et al. 2020)

e Ltis recently evaluated globally
using the J2/AL along-track SSH data
based on spectral slope breaks
between balanced vs. unbalanced
motions

e Global Lt pattern is largely
consistent with the MITgcm
estimates

e In WBC & ACC regions, altimeter-
based Lt is ~ 50km, slightly larger
than MITgcm; this may be limited by
the along-track SSH resolution



Modeled SSH snapshot Surface ¢ snapshot
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e In an idealized 2km-resolution OGCM simulation 4 balanced motion
(no tides; re-entrant baroclinic zonal jet), geostrophic
balance is found to be valid down to O(10km)
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e Implication: If we’re able to delineate SSH signals
due to the unbalanced wave motions, we could
detect balanced motions from SSH shorter than Lt
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What constitutes the unbalanced motions in 15-150km range ?
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e In the 15-150km range, unbalanced motions are
dominated by semi-diurnal internal tides + mode-
1~3 IGWs

e Reduction of these wave motion signals will allow
us to examine, in this case, balanced, sub-inertial,
fine-scale motions in the sub-100km range
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Typical SSH wavenumber-frequency
spectra from MITgcm in a STCC region;
Lt = 100km in this example.



Exploring governing dynamics from SSH spectral slopes
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e De-noised alongtrack SSH spectral
slopes have been used to infer the

governing dynamics, QG vs. SQG, or
Phillips- vs. Charney-type instability
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e WBCs are more SQG than
QG (also Le Traon et al. 2008)

40
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the Lt estimate
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e Combined Chelton’s eddy-tracking

dataset & global surface drifter data to

explore mesoscale eddy’s impact on

finer-scale features via composites

¢ While no differences are found in EKE

levels between AEs & CEs, AE’s strain

levels (evaluated from AVISO-SSH) are
~30% higher than those of CEs.

. Anti-Cyclone

m— Cyclone

| Eddies

(statistics based on 215K tracked eddies)

1

' feu
Sq \a <(xg

Zhang & Qiu (2018)

vg)* (2
oy




07k

0.65

0.6

Impact of mesoscale eddies upon finer-scale motions

Track of Drifter with Float Number 3030
=

Normalized mesoscale EKE as

“~ L

-

302.5

303 303.5

Lon

304

304.5

AVISO-SSH map in color

305

a function of eddy life-cycle

Udrifter
geo

ageo

Normalized mesoscale strain Sg
as a function of eddy life-cycle

e From concurrent AVISO-SSH & surface drifter
velocity data, evaluated ageostrophic flows
U.eeo @S residue

e Using scale separation, removed mesoscale

U.eo induced by the cyclostrophic effect

e Consistent with the strain signals, AEs are
found to have higher, fine-scale <U_,*> levels
than CEs
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Comments

Typical SST maps surrounding
an AE east of Japan

e Forward KE cascade from meso- to smaller-
scales is an important pathway for equilibration
of global ocean circulation

e Anticyclonic eddies have been observed to
shed streamers/filaments more frequently than
cyclonic eddies - possible causes include
anticyclonic ageostrophic & symmetric
instabilities ...

e Combined altimeter & surface drifter analysis
helps to establish statistics, but difficult to
elucidate evolution/mechanism

e Analyses of SSH signals that resolve meso- &
smaller-scales simultaneously can lead to
improved understanding of forward KE cascade

O

cold warm



Impact of fine-scale variability to meso-scales
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e Using AVISO product, Scott & Wang (2005) detected inverse KE cascade in the
surface ocean, rather than mediated via barotropic mode; the threshold wavelength
where inverse cascade emerges is estimated to be > O(150~250km)

e Subsequent investigations based on both AVISO & high-resolution OGCM output
suggest the AVISO-based threshold wavelength is likely over-estimated & the large
forward cascade I] value could be an artifact of the gridded AVISO product

(e.g., Arbic et al. 2013; Qiu et al. 2014)



AVISO rms SSH map in the North Pacific
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Comments

¢ Inverse KE cascade likely occurs over the
broad 15-150km range of our interest

¢ Need observational fine-scale SSH data to
determine the “true” threshold wavelength

e Need to quantify the relative contributions
from inverse cascade vs. generation by
instabilities for the observed mesoscale EKE
field
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Contribution to w by fine-scale upper ocean variability

Chelton et al. (2011)

e Itis well established that mesoscale eddies play a determinant role in
lateral transport of upper ocean mass, heat/salt, & BGC tracers

e Upper ocean vertical circulation, on the other hand, requires divergent
motions = finer-scale circulation variability can potentially play a
fundamental role as it is less constrained by geostrophy than mesoscales

¢ In many parts of the world ocean where SQG dynamics dominate (e.g.,
WABCs, ACC), SSH signals in the 15-150km range can be used to better
reconstruct the upper ocean w field by using the SQG, or extended SQG,
framework (Qiu et al. 2020, JPO)
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e Used Lapeyre & Klein’s (2006) eSQG formulation; while
missing features < O(20km), the eSQG-reconstruction
captures well balanced w field: spatial correlation r =0.72



(a) MITgem 1: 2012-03-29 00hr
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e Used Lapeyre & Klein’s (2006) eSQG formulation; while
missing features < O(20km), the eSQG-reconstruction
captures well balanced w field: spatial correlation r =0.72

e By degrading input SSH data to AVISO-resolution, only
large mesoscale w features are now captured; r = 0.51
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e Used Lapeyre & Klein’s (2006) eSQG formulation; while
missing features < O(20km), the eSQG-reconstruction
captures well balanced w field: spatial correlation r =0.72

e By degrading input SSH data to AVISO-resolution, only
large mesoscale w features are now captured; r = 0.51

e In addition to lower spatial correlations, reconstructed w
variance is also reduced by 30% in summer & 50% in winter




Concluding Remarks

s Oceanic variability in the 15-150km range play important roles in
upper ocean’s turbulent KE transfers & vertical heat/material
transport

m 15-150km is the range where balanced circulation variability &
unbalanced internal tides/IGWs co-exist. Effort to disentangle
these 2 types of motions is needed to better describe the
smaller-scale balanced flows, including w.

s Fully understanding of the 15-150km oceanic variability requires
a synergy to combine analyses of available/forthcoming along-
track & along-swath SSH data, HR OGCM simulations &
assimilative model output



