Improvements and limitations of recent mean sea surface models: importance for Sentinel-3 and SWOT.

M.-I. Pujol, P. Schaeffer, <u>Y. Faugère</u>, F.-X. Davanne, D. Sandwell, G. Dibarboure, N. Picot

→ The quality of the MSS field has a direct impact on the quality of the SLA field

Toward a new era of altimetry :

- New technologies (SAR, wide-swath)
- Improved data processing (retracking, noise reduction, improved environmental/geophysical corrections, ...)

→ It will be possible to observe small/sub-mesoscales in a near future

What are the MSS errors at small/sub mesoscale ? How can we reduce them ?

MSS are characterized by :

Omission errors : part of the MSS signal is missing (cf cross-track altimeter resolution, smoothing induced by the mapping methodology, ...)

Main source of error in previous MSS models (e.g. CNES_CLS11), they have been strongly reduced in up to date models (e.g. CNES_CLS15, DTU15) thanks to the use of geodetic altimeter measurements

wavelengths ranging 10-100km along Sentinel-3 A track

CNES_CLS15 vs CNES_CLS11:

Errors reduced by a factor 2.3 for wavelengths ranging 30-100km

22% reduction of the SLA variance in coastal areas

Pujol et al, 2017 (in revision)

Recent MSS errors characterization

Intro: MSS errors description:

Ways of improvement:

Conclusions:

MSS are characterized by :

Commission errors: part of non-MSS signal is introduced (e.g. ocean variability, HF errors, ...).

The commission error is higher along track of geodetic measurements : difficulty to mitigate the ocean variability at wavelengths < ~200km

CNES_CLS15 (DTU15): commission errors represent ~1cm² (1.7 cm²) i.e. 9.3% (17%) of the SLA variance along Jason-1 geodetic tracks

Fig: Temporal evolution of the SLA variance along the tracks of Jason-2 (J2) and Jason-1 interleaved (J1N) and geodetic (J1G) phases. The SLA was high-pass filtered (250km) and estimated using MSS CNES_CLS15 (black and red lines) and DTU15 (grey and cyan lines)

Pujol et al, 2017 (in revision)

Recent MSS errors characterization

Intro: MSS errors description:

Ways of improvement:

Conclusions:

MSS are errors at short wavelengths (<100km) are estimated using the "delta-cycle" methodology (Pujol, 2017)

MSS CNES CLS15 errors along AL tracks Wavelengths [10, 100 km] 60 40 20 0 -20 -40 -60 -100 100 MSS errors (cm2) -2 -1 0 1

CNES_CLS15 (DTU15):

- 12% (30%) of the SLA variance along repetitive tracks (AL): mainly omission
- 30% (30%) of the SLA variance along uncharted ground tracks (S3A): omission+commission They locally reach more than 2 cm².

Fig: Variance of the absolute MSS errors estimated for MSS CNES_CLS15 for wavelengths ranging from 10 to 100 km along AltiKa (top) and Sentinel-3A (bottom) tracks.

Pujol et al, 2017 (in revision)

A collaboration with **D Sandwell** (SIO) for preparing MSS for CAL/VAL SWOT. <u>Approach</u>:

- •Use CNES_CLS15 MSS model to constrain large scales (> 30 km).
- •Use in addition slope profiles from 20Hz J1G and Cryosat-2 to constrain small scales
- ✓ no impact on large scale
 ✓ improvement of finest topographic structures

✓ grid differences are globally lower than 3 cm
✓ the mean difference is ~2 mm and std ~9 mm !

Fig: Differences between SIO & CNES-CLS 2015 MSS (cm)

MSS_SIO: omission errors reduction wavelengths < 100km by a factor ~1/3 compared to the CNES_CLS15 model. Locally up to 2 cm² reduction.

Differences between CNES_CLS11 errors and CNES_CLS15 errors estimated at wavelengths ranging 10-100km

Potential improvements with Sentinel-3A

Intro: MSS errors description:

Ways of improvement:

Conclusions:

On going work: A precise MSS can be estimated along the Sentinel -3A tracks. It consist in a hybrid precise Mean Profile (HMP).

First estimation done with nearly 1 year (cycles 3-10 +12) of Sentinel-3A measurements at 20Hz resolution. 1 cycle kept independent (Cycle 11)

The methodology consists in:

1) colocation of the measurement at theoretical positions

2) correction of the ocean surface variability thanks to the DUACS merged products \rightarrow limitation at wavelengths < 200km

3) Correction of the MSS gradients between observed and theoretical position

- 4) temporal mean of the collocated measurements
- 5) Merging the temporal mean and the MSS CNES_CLS15

Fig: Differences between MSS CNES_CLS15 and HMP estimated along Sentinel-3A tracks bathymetric structure south of Japan sampled by Sentinel-3A

On going work: Preliminary results shows that the HMP estimated along the tracks of Sentinel-3A seems to resolve more accurately some MSS gradients: continental slopes, seamounts.

MSS contours and differences of Sentinel-3A HMP and MSS

Evolution of the bathymetry (red line), MSS_CNES_CLS15 (green) and Sentinel-3A HMP(blue) along the Sentinel-3A track

Potential improvements with Sentinel-3A

Intro: MSS errors description:

Ways of improvement:

On going work: First analyses suggest a reduction of the MSS errors along the tracks of Sentinel-3A when using the HMP estimated along the tracks.

However, 1 year of Sentinel-3A does not allow to accurately reduce part of the ocean variability.

Fig: Differences between SLA variance estimated using the MSS CNES_CLS15 and using the Sentinel-3A along-track MP. Estimation done on cycle 11 kept independent for HMP estimation

Conclusions:

Using a HMP along the Sentinel-3A track contributes to reduce the MSS errors along specific geodetic structures. \rightarrow up to 2cm² reduction.

However, part of the SLA variance reduction underline significant commission errors : only few month of Sentinel-3A measurements available

Potential improvements with Sentinel-3A

Intro: MSS errors description:

Ways of improvement:

On going work: First analyses suggest a reduction of the MSS errors along the tracks of Sentinel-3A when using the HMP estimated along the tracks.

However, 1 year of Sentinel-3A does not allow to accurately reduce part of the ocean variability.

CNES_CLS15 and using the Sentinel-3A along-track HMP. Estimation done on cycle 12 used for MP estimation Using cycle 12 =>not independant

Conclusions:

Residual commission errors observed on HMP induce a reduction of the SLA variance when considering a period used for MP estimation

On going work to be consolidated

Intro: MSS errors description:

Ways of improvement:

Conclusions:

On going work: First analyses suggest a reduction of the MSS errors along the tracks of Sentinel-3A when using the HMP estimated along the tracks.

SLA variance reduction observed at wavelengths ~10-150km when using the HMP estimated along Sentinel-3A tracks.

> On going work to be consolidated

Fig: Sentinel-3A SLA PSD (cycle 12). SLA computed using MSS_CNES_CLS15 (blue) or HMP estimated along Sentinel-3A tracks (green)

MSS errors have been significantly reduced in the latest versions (CNESCLS15, DTU15) \rightarrow Important contribution of geodetic measurements

However, MSS errors remain significant along uncharted tracks:

→ omission errors: we need additional measurements (HR) on uncharted tracks

→ commission errors : we need additional measurements to better average out the ocean variability

The up-to-date MSS models do not allow us to access the smallest wavelengths (< \sim 30km) \rightarrow we need to improve the MSS estimation at small wavelengths to benefit fully from new upcoming altimeter technologies. Work is on going to improve the MSS estimation methodology :

- ➤ Improved altimeter processing methodology → reduction of the noise measurement; better restitution of the MSS gradients
- ➤ Sub-optimal algorithm used to merge the gridded MSS and S3 HMP → Great potential of the SAR sentinel-3A measurement with reduction of the omission errors

Thank You !

Contact: mpujol@cls.fr