Priorities for installation of new continuous GPS/GNSS near to tide gauges
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Figure 1: Difference between =
GPS-observed vertical land =
movement observed and —
modeled GIA uplift (ICE-5G +
VM2(v1.2)). Black triangles e

Satellite altimeter bias-drift estimates are sensitive to the adopted vertical land

movement correction applied at tide gauges (TGs) [Watson et al., 2015]. In the T
absence of direct GNSS measurements, correction for vertical land movement is o - = : >
 often made via models of glacial isostatic adjustment (GIA), believed to be the e === - = : —

"1 dominant relevant geophysical process globally. At TG locations where GPS/GNSS R | \ e e S tidf _ % ===
- have been deployed, comparison with GIA models has revealed differences = e e \ A} = - 3 EausSocatlon  Hsedin SRas =
- level reconstructions without = =

commonly reaching =0.5mm/yr over continental scales (Fig.1) and locally much
larger [e.g., King et al., 2012].
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GPS/GNSS monitoring of TGs has gradually increased over the last decade but King - '
et al. [2012] concluded that such monitoring is

‘é . g ] al. 2012 : “'-:
hampered by the fact that only 1/3 of the tide gauges used in the most widely 2032 :
cited sea-level reconstructions presently have a GPS located within a tolerable : 3 _D =
distance, and only about 2/3 of those have time series of sufficient quality.” - =
-~ Here we summarise a set of priorities [King, 2014] for new GPS/GNSS deployments - g | . i —
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calibration/validation that
are far from a GNSS site =

.- Methodology

= GNSS sites: locations sourced from a variety of international public archives i/ S '} with public data archives. =

%" including TIGA, IGS, and national public archives with an English web interface and N - ® Circle size scales with =

~ with data (>3 years or ongoing data collection) in RINEX format and full metadata. — = L. d;Sta”C? om ”?a;eSt - %

—— Time series quality was not assessed in the present study. TGs with a GNSS within * i — Z,t\lesrsn zittl\e/e\NTiShV(\;:taa;nneaL“\é E=
20 km were deemed to be satistactorily monitored for the purposes of this study = Co Hotam b es=Tho Cyanp =

'-:‘:; (cyan triangles Figs. 2&3). = ;/’, ;":‘\;‘ -30° triangles show TGs (+66° =

.= Altimeter tide gauges: TGs within the TOPEX/Poseidon mission series — ! == [ 'at]:]f_“fje) fonf'dered Ik §§

—— calibration/validation studies being undertaken at UTAS/CSIRO were o\ I == ‘ggo i sUiSentyCose S -

~ supplemented by operational RLR TGs at higher latitudes to allow consideration of &= S e a0 Fé

‘\ future altimeter missions. 200 TGs satisfied these criteria (Fig. 2), with 66 not = ; = i S Onaoing TG . _ :j‘

“* having a nearby GNSS receiver with data in a public archive (33%). = n9oIn3 Figure 3: Locations of long- =
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> Long-running tide gauges: TGs spanning >= 40 years and that are currently (or | — .2 circles, data span inyears) ==

. recently) operational (defined as 2010 or newer data within the PSMSL RLR - ;.- - that are far from a GNSS site =

“= database). 376 TGs were found that satisfied those criteria and these are shown in é Y & g = 30 with data in public archives.
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— Almost 50% of considered TGs remain long distances from GNSS receivers with E e ; it T

g data in public archives (Figs. 2&3). Countries within the Asian continent most need" :.4 oS i triangles show TGs

S NEW GNSS deployments, or public release of existing GNSS datasets, but new US, é‘%ﬁ iy - [ {{ considered with sufficiently

= Australian and European deployments are also required. o ‘?‘ T 60" Distance to nedrést TG with GNSS close GNSS.
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——  GNSS located less than 20 km from a TG may still not sufficiently accurately =  180° 240° 300° 0° 60° 120°

g represent TG land movement due to localised ground deformation; either regular
— monitoring or location of GNSS on TGs is required to overcome this uncertainty.
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