

F. Lyard, D. Allain*, C. Nguyen, Y. Soufflet

LEGOS/CNRS, Toulouse, France *CNES

Contact: florent.lyard@legos.obs-mip.fr

- periodic in y-direction
- open boundaries at both extremities (abyssal plain and shelf)
- barotropic OBCs prescribed at both ends
- frictionless tides

COMODO internal tide test case: 3 academic density distribution

Test case #2: uniform N

Similar solutions on the abyssal plain Striking absence of IT in Hycom solution on shelf

Sensitivity to Kz

Baroclinic u, instant snapshot

Concluding remarks

COMODO internal tide test cases are interesting to investigate

- Discretisation (horizontal and vertical, coupling) issues
- Open boundary conditions issues
- □ Hidden diffusion issues
- □ Frequency-domain versus time-stepping convergence
- Hycom (time-stepping) and T-UGOm (frequency domain) get similar solutions
- 3D frequency-domain modelling is extremely cheap (compared to time-stepping) and accurate
- LEGOS will base future IT corrections on T-UGOm (frequency-domain) modelling coupled with (frequency-domain) data assimilation

