Global M₂, S₂, O₁ and K₁ internal tides from satellite altimetry

Zhongxiang Zhao¹, Matthew Alford², James Girton¹ Luc Rainville¹, and Harper Simmons³

¹Applied Physics Laboratory, University of Washington
² Scripps Institution of Oceanography, University of California
³ University of Alaska, Fairbanks

A global internal tide model from satellite altimetry

Motivation

- Internal tide correction for SWOT
- Tidal energy budget and ocean mixing
- Constraints for numerical internal tide models

Global mode-1 M₂ internal tide

Satellite altimeter data

Method

Harmonic analysis

$$A\cos(\omega t - \phi)$$

Plane wave fit

$$\Sigma_{m=1}^{M} A_m \cos(kx \cos \theta_m + ky \sin \theta_m - \omega t - \phi_m)$$

ssh (x, y, t) in a fitting window (160 km for M₂)
<u>30,000 - 40,000</u> SSH data (reduce non-tide noise)
wavenumber k from World Ocean Atlas 2013

Amplitude Variance

Global mode-1 M₂ internal tide

7

Mask: highly energetic regions

Global mode-1 S₂ internal tide

E₈RS-1/2 and Envisat data not used

Global mode-1 O₁ internal tide

28 S/N equatorwards

Global mode-1 K₁ internal tide

30 S/N equatorwards

Global M₂ internal tide energy and flux

M₂ internal tides from CryoSat-2

Southbound and northbound components

To the north of Hawaii, some discrepancies

To the south of Hawaii, agree very well !!

Explain this difference Will help understand variability of the global Internal tide field.

Comparisons with a suite of numerical models

GOLD: H. Simmons et al.HYCOM: B. Arbic et al.MITgcm: D. Menmenlis et al.STORMTIDE: M. Müller

Summary

A global internal tide model version 0.0
This technique is applied to CryoSat-2 and a suite of numerical models

□ A lot of work ahead

- Objective metrics
- Optimal parameters
- Incoherence

- Seasonal modulation
- Inter-annual modulation
- Model comparisons