High resolution tidal modeling in the Arctic Ocean

M. Cancet, O. Andersen, F. Lyard, A.-T. Schulz, D. Cotton, J. Benveniste

Global models vs tide gauges \rightarrow large errors on shelves in the Arctic Ocean
(cm)

Context and objectives

- Lack of accuracy of the global tidal models in the Arctic Ocean
- Low mesh resolution
- Bathymetry:
- Huge work to check the whole bathymetry in detail in a global model
- Not well-kn difficult to have access to the data in the Arctic Ocean
- Assimilation: scarce tide gauge data, altimetry limited in latitude

\rightarrow Regional tidal modeling

Context and objectives

- CryoSat Plus for Ocean (CP4O) ESA project:
- CryoSat data processing
- Development and evaluation of new corrections and products
- Regional tidal modeling in the Arctic Ocean (on-going project)
- Same method as FES2012 / FES2014 / COMAPI (CNES projects)
- Hydrodynamic modeling
- Ensemble assimilation

Data processing

- Computation of the altimeter tidal harmonic constituents

Data processing

- Computation of the altimeter tidal harmonic constituents
- Remove/restore methodology: FES2004 is removed prior to tidal prediction and then restored to obtain the final tidal signal
- Altimetry data in boxes of $1^{\circ} \times 3^{\circ}$ down to $55^{\circ} \mathrm{N}$
- CryoSat-2 data in LRM and SAR mode (2010-2014)
- Envisat data (2002-2010)
- C2 LRM+ENVISAT from RADS, SAR retracked using primary peak retracker

Mesh refinement

- Start with a global mesh (FES2014 +)

Mesh refinement

- Start with a global mesh (FES2014 +)
\rightarrow consistent for patching the regional solution in a global one

Mesh refinement

- Start with a global mesh (FES2014 +)
\rightarrow consistent for patching the regional solution in a global one
- Locally refine the resolution
- Greenland East coast
- Northwest Passage
- North Pole...
\rightarrow Automatization of the mesh generation

Mesh refinement

- Start with a global mesh (FES2014 +)
\rightarrow consistent for patching the regional solution in a global one
- Locally refine the resolution
- Greenland East coast
- Northwest Passage
- North Pole...
\rightarrow Automatization of the mesh generation
- Define and extract the Arctic mesh

Number of vertices over the Arctic:
Final refined mesh: 267980

FES2014: 88271 (total: 797 366)

Hydrodynamic model set-up

- TUGO hydrodynamic model from LEGOS

Hydrodynamic model set-up

- TUGO hydrodynamic model from LEGOS
- Tuning of the bottom friction coefficient

Vector difference (cm) - Tide gauge database

\rightarrow The best regional hydrodynamic (non-assimilated) solution obtained with bottom friction tuning has equivalent performances to the assimilated global models.

Hydrodynamic model set-up

- TUGO hydrodynamic model from LEGOS

- Double friction coefficient in sea ice regions (under dev.)
\rightarrow based on sea ice extent maps from NSIDC (shapefiles)

\rightarrow Several configurations to be tested: Summer median extent, Winter median extent, Summer extremely small extent, ...

Ensemble simulation

- Preparation of the parameters perturbations

Ensemble simulation

- Preparation of the parameters perturbations
- Local perturbations of the bottom friction coefficient : energy dissipation

\checkmarkPotential zones for bottom friction perturbations (TBC)

Conclusions and perspectives

- Conclusions
- For the semi-diurnal waves (M2, S2), the regional purely hydrodynamic model shows equivalent performances to the global assimilated models
- For the diurnal waves (K1, O1), still some work to do
- Assimilation will improve the model performances
- Next steps
- Analysis of the influence of the sea ice extent
- Simulations with local perturbations of the bottom friction coefficient and the bathymetry to prepare the assimilation
- Assimilation of altimetry and tide gauge data
- The Arctic tidal atlas will be delivered to ESA in December 2015

Conclusions and perspectives

- Perspectives
- Exploitation of this new tidal model to improve CRYOSAT-2 altimeter products (and any mission reaching high latitudes: SARAL/AltiKa, Sentinel-3) and prepare CRYOSAT-3 (tide correction)
- Exploitation of this model to improve ocean modeling and forecasting for Arctic studies: ocean circulation, sea-ice drift, ...
- Bathymetry improvement in the Arctic
- In situ data release ?
- Inversion of altimetry data
- Other strategic regions with a need for high resolution tidal modeling
- Ex: shelves and estuaries, in preparation of SWOT
- Automatization of the hydrodynamic simulations for model tuning and perturbations

Co

Thank you !

