Reduction of the 58.77-day Signal in the Mean Sea Level derived from TOPEX/Poseidon, Jason-1 and Jason-2 data with the latest FES and GOT ocean tide models

> <u>L. Zawadzki</u>¹, M. Ablain¹, L. Carrere¹, A. Guillot², N. Picot², F. Lyard³, R. Ray⁴, N. Zelensky⁴

> > ¹ CLS, France
> > ² CNES, France
> > ³ LEGOS, France
> > ⁴ (NASA/GSFC), USA

Contact: <u>lzawadzki@cls.fr</u>

Service Altimetrie Localisation Precise

OST/ST 2015

October 20-23, 2015 Reston, VA

Introduction

CLS

 Former studies (2010) highlighted a strong 58.77-day signal in Jason-1 & 2 Global Mean Sea Level (GMSL) time-series whereas it is smaller in TOPEX/Poseidon.

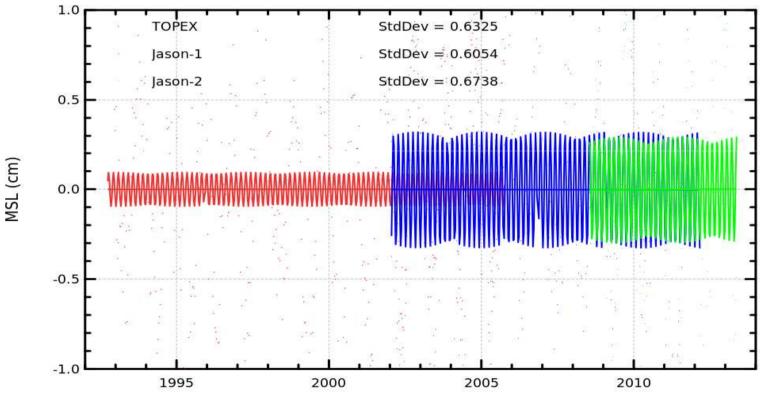


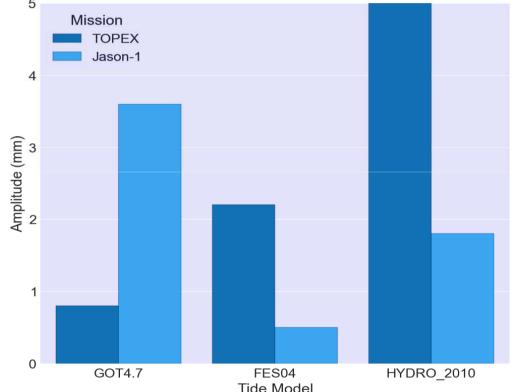
Fig. 1: Amplitude of 58.77-day signal in TOPEX, Jason-1 and Jason-2 GMSL series, extracted from Ablain et al., 2010 (OSTST oral)

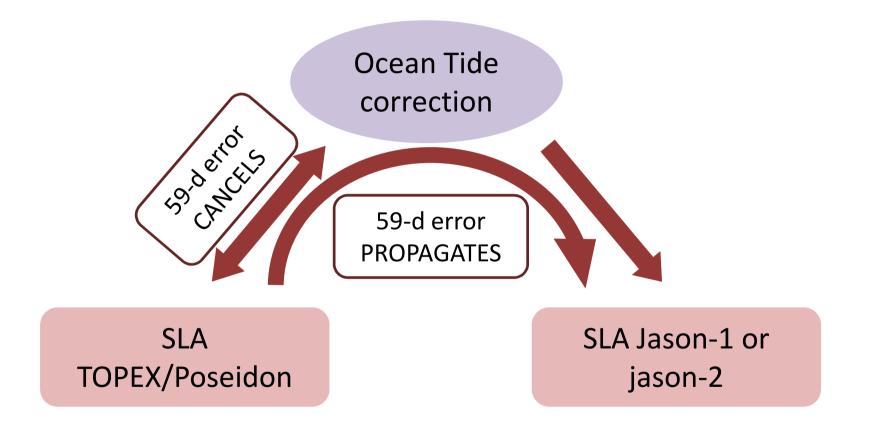
Introduction

Conclusions of the dedicated OST/ST Session (Lisbon, 2010):

- The signal is an error, aliasing of a 0.5-day error with the TOPEX and Jason repetitivity (9.91 days)
- Using a pure hydrodynamic model, it has been shown that a TOPEX error has been assimilated in GOT (and to a lesser extent FES) S2waves.

(Average amplitude of S2 ocean tide ≈ 90 mm at global scale)




Fig. 2: Amplitude of 58.77-day signal in TOPEX and Jason-1 GMSL series, changing ocean tide correction. Amplitudes extracted from Ablain et al., 2010 (OSTST oral)

Introduction

cnes

CLS

- 1. Quantify the reduction of this error with the latest GOT and FES tide corrections
- 2. Update 2010 analyses with FES2014 hydrodynamic solution
- 3. Extend 2010 results with regional analyses

Reduction of 58.77-day error...

GOT4.7	 T/P measurements only for S2 wave. No correction of the atmospheric tides S1/S2 in the dry troposphere correction used in the data. 	FES2004	-Hydrodynamic model -T/P measurements only (plus Tidal gauges) for S2 wave.
GOT4.8	Same as GOT4.7, but includes a correction of the atmospheric tides S1/S2 in the dry troposphere correction.	FES2012	-Hydrodynamic model updated -T/P (extended series), Jason-1 and Jason-2 measurements (no Tidal gauges) for S2 wave.
GOT4.10	-Jason-1 and Jason-2 measurements only for S2-wave. - Dry troposphere correction is OK.	FES2014	-Hydrodynamic model updated -T/P, Jason-1 (extended series) and Jason-2 (extended series) measurements (plus Tidal gauges) for S2 wave.

1

Reduction of 58.77-day error...

- Comparison between GOT releases and FES releases at global scale.
- Average amplitude of S2 ocean tide \approx 90 mm at global scale
- Comparison also performed at regional scale (not shown)

CLS

cnes

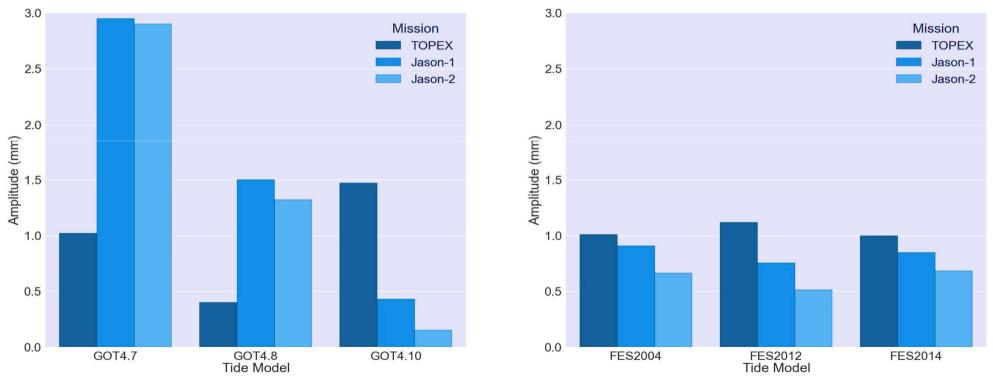


Fig. 4: Amplitude of 58.77-day signal in TOPEX, Jason-1, Jason-2 GMSL series, changing ocean tide correction. Selection on latitudes (<50°), bathymetry (>1000m) and oceanic variability (<20cm)

Characterization of the 58.77-day error ...

Characterization using the hydrodynamic solution of FES2014 (not impacted by altimetry errors). 3.0

2

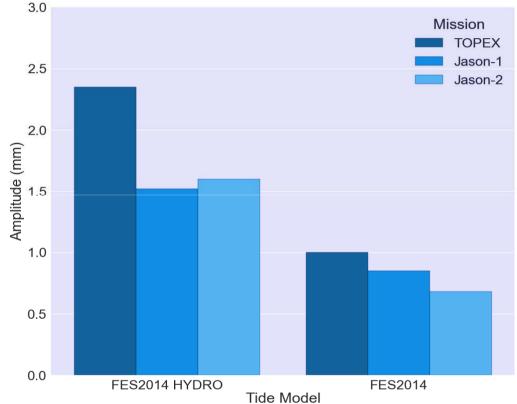


Fig. 5: Amplitude of 58.77-day signal in TOPEX, Jason-1, Jason-2 GMSL series, with FES2014_HYDRO (pure hydrodynamic ocean tide solution), an alternative solution of FES2014 and FES2014. Selection on latitudes (<50°), bathymetry (>1000m) and oceanic variability (<20cm)

CLS

cnes

Characterization of the 58.77-day error ...

Characterization using the hydrodynamic solution of FES2014 (not impacted by altimetry errors).

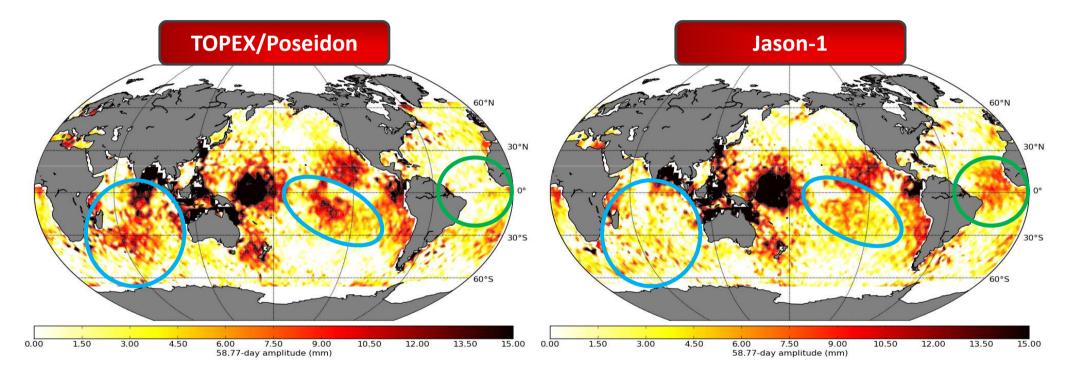


Fig. 6: Local Amplitudes of 58.77-day signal in TOPEX (Left panel) and Jason-1 (Right panel) MSL corrected with FES2014_HYDRO (pure hydrodynamic ocean tide solution)

Characterization of the 58.77-day error ...

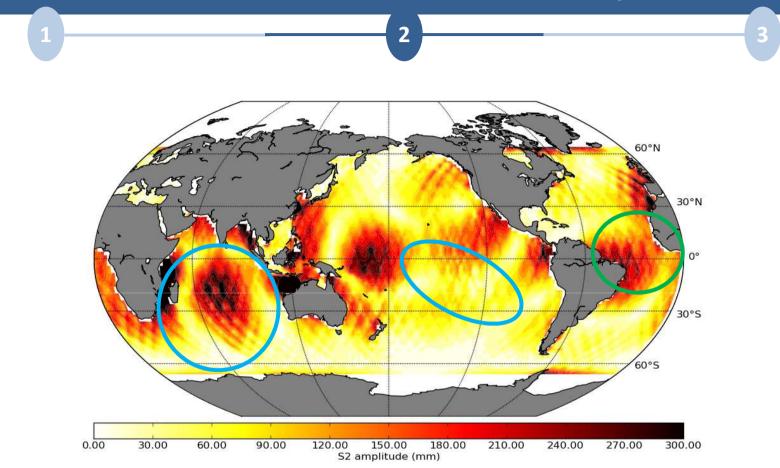


Fig. 7: Local Amplitudes of S2 ocean tide signal on Jason-1 tracks (GOT4V10)

CLS

Conclusions & Outlooks

- 1. The 58.77-day error in Global MSL has been significantly reduced thanks to the latest GOT and FES models
- 2. GOT4.10 and FES2014 are two valid solutions to ensure a low 58.77-day error on Jason-1 and Jason-2 MSL (<1mm)
- 3. FES2014 is a good compromise to ensure a consistent error between T/P and Jason MSLs for studies at climate scale
- 4. Most of the 58.77-day error is due to the assimilation of T/P SSH (Indian Ocean)
- 5. Part of the error is however due to the assimilation of Jason-1 and Jason-2 SSH (Atlantic Ocean)

3

Conclusions & Outlooks

- 1. Can the assimilation of ocean tide in the orbit modeling induce the 58.77-day error? (ongoing study)
- 2. Can the Solar Radiation Pressure model or the Reduced dynamic method have an impact on this error? (ongoing study)
- 3. Could there be an error in T/P radiometer (TMR) data? (ongoing study)
- 4. Where does the low error in ionosphere correction come from?
- 5. A 12h error cannot be aliased with Envisat or ERS cycles, but can we detect it with Cryosat-2? (Leuliette et al, OSTST 2014 Konstanz)
- 6. Finally, a complementary study (results not shown) showed that the Aviso L4 products (Duacs DT MSLA grids) do not seem impacted by this error. Which part of the process eliminates the 58.77-day error? Are along-track L3 products impacted?

To be published: "Reduction of the 58.77-day Signal in the Mean Sea Level derived from TOPEX/Poseidon, Jason-1 and Jason-2 data with the latest FES and GOT ocean tide models", L. Zawadzki, M. Ablain, L. Carrere, A. Guillot, N. Picot, F. Lyard, R. Ray, N. Zelensky

3