

Status DORIS RINEX Processing at GSFC

N. P. Zelensky¹, F.G. Lemoine², D.D. Rowlands², D.S. Chinn¹, O. Bordyugov¹

 ¹ SGT Inc., Greenbelt, Maryland, U.S.A.
² NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A.

OSTST POD Reston, Virginia October 20-23, 2015

In preparation for DORIS Rinex processing Preliminary test conducted

(beginning with Jason-3 only Rinex available)

- 1) Method for converting DORIS Rinex phase data to range-rate (Doppler) data.
- 2) Compare Jason-2 POD processing with the new reconstructed Rinex range-rate data against traditional V2.2 range-rate data.
- 3) Compare DORIS stations estimated with V2.2 and Rinex range-rate Jason-2 data

Range Rate from DORIS Rinex phase and corrections to observed measurement

rrate (T^c) =
$$\lambda_1 (\Phi_1 (T_i) - \Phi_1 (T_{i-1})) / (T_i - T_{i-1})$$
 (Mercier 2015)
= (D (T^c_i) - D (T^c_{i-1})) / ΔT + c(Δt_r - Δt_e) / ΔT

+ $\Delta_{\text{satellite USO frequency}}$ + $\Delta_{\text{ionosphere}}$ + $\Delta_{\text{relativity}}$

where

D(T^c) : distance between emitter (e) and receiver (r) 2GHz phase centers at coordinate TAI time (T^c), and includes refraction effects. $(\Delta t_r - \Delta t_e)/\Delta T$: satellite-beacon clock frequency offset difference; Δt clock offset between i and i-1 times; $\Delta T = 10$ TAI seconds.

and

$\Delta_{\text{satellite USO free}}$	equency : Polynomial fit to offset estimates
Δ _{ionosphere}	: 1 st order correction (Lemoine 2015)
Δ _{relativity}	: Periodic terms

Δ_{satellite USO frequency}: 2nd order polynomial fit Rinex frequency offset estimates include satellite clock error and Relativistic bias/drift

USO frequency correction residuals

USO frequency correction performance using external ephemeris

test (SLR/DORIS) 10-day (cycle 001)	DORIS points	DORIS (mm/s)	time bias (10 ⁻⁶ sec)
v2.2	187402	0.3686	-2.8
rinex; no correction	190605	0.3810	-1.0
rinex; linear correction	190565	0.3786	-0.9
rinex; 2 nd order polynomial	190573	0.3784	-1.0

Continue to investigate improving satellite USO frequency correction

DORIS range-rate Relativity correction for satellite clock – only periodic terms required

$$\Delta V_{REL} = \frac{1}{c} \left[U_r - U_e + \frac{V_r^2 - V_e^2}{2} \right]$$
$$U = \frac{GM}{r} \left(1 - \left(\frac{a_e}{r}\right)^2 J_2 \frac{3\sin^2(\varphi) - 1}{2} \right)$$
With J₂ = 1.0826264 10⁻³

(JM Lemoine et al., 2015)

For correction to RINEX data:

- 1) use sp3 orbit data to compute U_r and V_r which vary in time.
- 2) assume a single station position to compute $\rm U_{e}$ and $\rm V_{e}$ which do not vary in time.
- 3) periodic terms obtained upon removing an estimated offset+rate from the total relativity correction.

Relativity periodic terms are due only to the satellite and will be identical for any ground station

Jason-2 DORIS Residuals

Jason-2 DORIS time bias / 10-day arc wrt SLR (1.1 micro-sec constant difference in time tags)

Jason-2 DORIS data after GEODYN dynamic editing

Jason-2 DORIS-only orbit differences

Independent SLR residuals show DORIS orbits of comparable accuracy up to 2014

A few cases where Rinex DORIS converges to degraded orbits

Jason-2 DORIS station solution Helmert Tx, Ty, Tz are similar for V2.2 and Rinex data

Jason2 DORIS 10-day station solutions compared to DPOD2008: Tx

Jason-2 DORIS station solution Helmert Scale

Summary

1) Jason2 Rinex DORIS converted to range-rate and compared to V2.2 data processing over cycles 1-260.

2) Overall V2.2 /Rinex data POD processing compares as follows:

DORIS data	average points used	rms residuals mm/s	radial cm	cross-trk cm	along-trk cm
V2.2	152883	0.3803			
Rinex	149142	0.3959	0.43	1.88	2.39

3) However there are two major problems:

- 1) Isolated Rinex arcs can converge to degraded orbit solutions yet show normal DORIS residuals
- 2) Rinex data from 2014 shows degraded POD

BACKUP

K shifted frequency beacons

frequency K: $f_{K} = (1 + \alpha_{K}) f_{2GHz}$

and

$$\mathbf{Q}_{corr}(\mathbf{t}_1) = \lambda_{K} \left(\Phi_{2GHz} \right) + \mathbf{c} * \mathbf{t}_1 * \alpha_{K} / (1 + \alpha_{K})$$

where $\alpha_{K} = \frac{K * (3/4 * 87) / (5 * 2^{26})}{5 * 2^{26}}$

