

CNES/GRGS gravity field solutions from GRACE: RL03-v2

J.-M. Lemoine ⁽¹⁾, S. Bourgogne ⁽²⁾, S. Bruinsma ⁽¹⁾, F. Reinquin ⁽¹⁾, P. Gégout ⁽³⁾, R. Biancale ⁽¹⁾

- (1) CNES/GRGS, Toulouse, France
- (2) Géode & Cie, Toulouse, France
- (3) GET/UMR5563/OMP/GRGS, Toulouse, France

Data processing

GRACE (L-1B "Version2" data)

- K-Band Range-Rate data ($\sigma_{apriori} = .1 \mu m$)
- Accelerometer / attitude
- GPS data (1-day arcs, σ_{code} = .8 m, σ_{phase} = 20 mm / 30s resolution) (actually: $\sigma_{2002-2003}$ = 8 mm/30 s , $\sigma_{2003-2013}$ = 20 mm/300 s , $\sigma_{2013-2015}$ = 8 mm/30 s)

SLR

- Lageos1/2 data (10-day arcs, $\sigma_{apriori} = 6 \text{ mm}$)
- Starlette/Stella data (5-day arcs, $\sigma_{apriori} = 10 \text{ mm}$)

Physical parameters present in the normal equations

- Gravity spherical harmonic coefficients complete to degree and order 175 (truncated to 30 for LAGEOS and 40 for GPS data)
- Ocean tides s. h. coefficients for 14 tidal waves with maximum degree/order ≤ 30 (not used yet)

Models used: $v0 \rightarrow v2$

Dynamical models

Gravity	$EIGEN$ - $GRGS$. $RL02 \rightarrow EIGEN$ - $6S2$ (LAGEOS/GRACE/GOCE)	
Ocean tide	$FES2004 (degree 80) \rightarrow FES2012 (Legos)$	
Atmosphere	3-D ECMWF pressure grids / 6hrs → ERA-interim / 3hrs	
Ocean mass model	$MOG2D (non-IB) / 6hrs \rightarrow TUGO (Legos) / 3hrs$	
Atmospheric tides	→ Not necessary any more	
3 rd body	Sun, Moon, 6 planets (DE405)	
Solid Earth tides	IERS Conventions 2010	
Pole tides	IERS Conventions 2010	
Non gravitational	Accelerometer data (+biases and scale factors)	

Geometrical models

SLR stations	<i>ITRF2008 coordinates</i> → updated
GPS	IGS orbits and CODE clocks → IGS Repro-1 orbits and clocks

Other models

Hydrology	Takan into account by the a priori gravity field
Glacial Isostatic Adjustment	Taken into account by the a priori gravity field

Interest of truncated SVD

❖ Inversion technique used for RL03: truncated Singular Value Decomposition (SVD)

- ➤ It is more efficient to solve well chosen linear combinations of coefficients (by truncated SVD) than to solve indistinctly the coefficients (by Cholesky decomposition).
- > Demonstration with a normal matrix up to degree/order 80:
 - 1) Solving for the first 2601 components of the canonical basis (i.e. spherical harmonic coefficients up to degree/order 50)
 - 2) Solving for the first 2601 components of the basis made by the eigenvectors of the normal matrix

1) Cholesky decomposition

Equivalent Water Heights comparison

Cholesky inversion up to degree and order 50: 2601 parameters

Reference: Mean field

Degree 2 to 80

min -184.81 cm / max 168.34 cm / weighted rms 34.56 cm / oceans 37.61 cm

2) Truncated SVD

Equivalent Water Heights comparison

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Inversion strategy

Trying to solve the problems at the poles

- Since SVD does not solve sectorial coefficients due to a lack of information, we need to introduce decent a-priori sectorial coefficients before using SVD
- > So we tried to establish a 2-step inversion in RL03-v2
 - First step: Cholesky inversion with constraints to obtain good sectorial coefficients
 - Second step: Truncated SVD inversion starting with the first step solution

Results

> The 2-step inversion improves the solutions mainly at the poles

RL03-v1

Equivalent Water Heights comparison

T36.decade.22992.0.G_ONLY.VI_RL03EQ.svd2500.shc

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

RL03-v2

Equivalent Water Heights comparison

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Mean model generation

Mean models are now generated from time series

- ➤ Fitting each series of monthly spherical harmonic coefficients by a set of 6 parameters :
 - > Yearly bias and slope: piecewise linear function except in case of ...
 - Jumps caused by big earthquakes (3 so far : Sumatra, Concepcion and Tohoku)
 - Annual and semi-annual sine/cosine functions (with continuity constraints at hinge epochs)
- ➤ It means 600 000 coefficients for a 80x80 spherical harmonic model which better match with GRACE monthly models
- Used for operational computation (i.e. altimetric orbit processing) or TRF processing (i.e. ITRF2014)

RL03 monthly model

Normalized S (10,01) coefficient

RL02-v2 mean model

Normalized S (10,01) coefficient

From RL03-v2 mean model with bias, drift per year, annual and semi-annual periodic terms per year

J2 behaviour

❖ J2 monthly variations are extended from 1986 till now

- From Lageos, Starlette and Stella data
- \triangleright Need to be consistent with other time variable models, e.g. ocean tides (Ssa, Sa, Ω_1)

www.thegraceplotter.com (CNES/GRGS)

Coefficient extrapolation

***** Extrapolated coefficients

- Mean drift, mean annual and semi-annual periodic terms from the first (backward) and last (forward) determined biases:
 - Before 1986 for 2-degree terms determined from Lageos data
 - Before August 2002 for all other terms up to degree/order 80
 - From 2014 forward for all terms (RL03-v2 model)

Altimetric validation

❖ The new RL03-v2 model reduces the geographically correlated radial orbit drift rate, from more than 1 mm/yr (for the RL02bis mean model) to less than 0.6 mm/y over ~7 years, with respect to Jason-2 GDR-E reduced-dynamic orbits (from GPS+DORIS).

❖ Jason-2 SLR residuals:

> RL02: 1.36 cm rms

Radial orbit drift rate Scale: -1 / +1 mm/yr [A. Couhert & al., 2015]

> RL03-v2 + C31 adjusted: 1.27 cm rms

Summary

- > RL02-v2 is used for GDR-E orbit production
- ➤ It is expanded in sets of 6 yearly coefficients (bias, slope, annual and semi-annual terms) per degree/order up to 80, and contains constant terms (from EIGEN6-S2) up to degree/order 175
- Extrapolated time-variable terms (before August 2002 and after July 2014) are based on global fits of monthly coefficients over 12 years of GRACE data
- Degree 2 time-variable terms are adjusted back to 1986 from Lageos data
- ➤ RL02-v2 is available on: http://grgs.obs-mip.fr/grace/variable-models-grace-lageos/mean_fields

Short-term perspective

❖ Next RL03-v3 model

- Improving the inversion process (Cholesky + SVD in a 2-step procedure)
- Completing the years 2014-2015 (no longer extrapolated)
- Homogenizing the relative weights (between GPS and KBR)
- Using more satellite data (Starlette, Stella, Lares, Jason...)

