

JASON-2, SARAL AND CRYOSAT-2 STATUS

Eva Jalabert, Alexandre Couhert, John Moyard, Flavien Mercier, Sabine Houry, Silvia Rios-Bergantinos

21/10/2015

Reston, USA

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2
 - CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

GDRE STANDARD

	GDR-D	GDR-E
Surface forces	Atmospheric model : DTM-94 for Jason1&2	Atmospheric model : DTM-13 for Jason1&2
	Solar radiation pressure model : pre-launch box and wing model	Solar radiation pressure model : calibrated solar radiation pressure model
Geopotential	EIGEN-GRGS_RL02bis_MEAN-FIELD Non-tidal TVG: annual, semi-annual, and drift up to deg/ord 50	EIGEN-GRGS. RL03-v2 .MEAN-FIELD Non-tidal TVG: one annual, one semiannual, one bias and one drift terms for each year up to deg/ord 80 ;
		C21/S21 modeled according to IERS2010 conventions
	Atmospheric gravity: 6hr NCEP pressure fields (20x20) + tides from Biancale-Bode model	Atmospheric gravity: 6hr NCEP pressure fields (72x72) + tides from Biancale-Bode model
Geocenter		Tidal: ocean loading and S1-S2 atmospheric pressure loading Non-tidal: seasonal model from J. Ries

GDRE STANDARD

	GDR-D	GDR-E
Loading	Ocean loading: FES2004	Ocean loading: FES2012 S1-S2 atmospheric pressure loading, implementation of Ray & Ponte (2003) by Dr. Van Dam
Pole tides	Pole tide: solid earth pole tides	Pole tide: solid earth pole tides and ocean pole tides (Desai, 2002)
GPS constellation	JPL solution at IGS (orbits and clocks) – fully consistent with IGS08	JPL solution in "native" format (orbits and clocks), referenced to the CoM of the solid Earth/Ocean system – fully consistent with IGS08 New phase correction maps (see poster F. Mercier)
Propagation delays		DORIS beacons phase center correction
Types of measurement	DORIS + GPS + SLR Or DORIS + SLR	DORIS + GPS Or DORIS-only SI R is now used independently to evaluate
		orbit precision and stability

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2
 - CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

SARAL

Saral/AltiKa

French/Indian satellite, launched in 2013

DORIS + SLR measurements

GDR-E (delivered orbit):

- Dynamic orbit (no reduced dynamics)
- DORIS only

Results

- SLR residuals
- Geographically correlated radial differences

SARAL – SLR RESIDUALS

Core network : L7090 L7105 L7810 L7839 L7840 L7941

21/10/2015

SARAL – GEOGRAPHICALLY CORRELATED RADIAL DIFFERENCES GDR-E - GDR-D

Mean:

Annual signal :

Saral, Doris-only Dynamic GDR-E vs. Doris+SLR stochastic GDR-D (2.5-by-2.5 deg grids), cycles 001-120

SARAL - CONCLUSION

SARAL RMS radial component (SLR) : 0,9 cm

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2
 - CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

CRYOSAT2

Cryosat2

ESA satellite, launched in 2010

DORIS + SLR measurements

GDR-E (delivered orbit):

- Reduced dynamic orbit
- DORIS only

Results

- SLR residuals
- Geographically correlated radial differences

CRYOSAT2 – SLR RESIDUALS

Core network + RMS SLR residuals	GDR-D : Doris + SLR, Stochastic orbit	GDR-E : Doris, Dynamic orbit	GDR-E : Doris, Reduced dynamic orbit
All elevation	1,3 cm	1,7 cm	1,6 cm
High elevation	0,9 cm	0,9 cm	0,8 cm

Core network : L7090 L7105 L7810 L7839 L7840 L7941

21/10/2015

CRYOSAT-2 – GEOGRAPHICALLY CORRELATED RADIAL DIFFERENCES GDR-E - GDR-D

Mean:

Drift :

Cryos2, Doris-only Reduced dyn. GDR-E vs. Doris+SLR stochastic GDR-D (3.5-by-3.5 deg grids), cycles 008-260

5 mm

Cryos2, Doris-only Reduced dyn. GDR-E vs. Doris+SLR stochastic GDR-D (3.5-by-3.5 deg grids), cycles 008-260

2 mm

CRYOSAT2 – CONCLUSION

CRYOSAT2 RMS radial component (SLR) : 0,8 cm

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2

GDR-D/GDR-E COMPARISON

- CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

JASON-2

Jason-2

French/American satellite, launched in 2008

DORIS + SLR + GPS measurements

GDR-E (delivered orbit):

- Reduced dynamic orbit
- DORIS + GPS
- Only for cycles 226 and 227 (no GPS) : DORIS-only dynamic orbit

Results:

- SLR residuals
- Geographically correlated radial differences
- Orbits comparison (GSFC and JPL)
- Crossover variance

JASON2 – SLR RESIDUALS

•			
Core network + RMS SLR residuals	GDR-D : Doris+SLR+GPS, Dynamic orbit	GDR-E : Doris+GPS, Dynamic orbit	GDR-E : Doris+GPS, Reduced dynamic orbit
All elevation	1,2 cm	1,3 cm	1,0 cm
High elevation	0,9 cm	0,9 cm	0,8 cm

JASON2 – GEOGRAPHICALLY CORRELATED RADIAL DIFFERENCES GDR-E - GDR-D

JASON2 – CROSSOVER VARIANCE DIFFERENCE W.R.T. GDR-D

GDR-E Doris + Gps, Dynamic orbit. Median = -12 mm²

JASON2 – COMPARISON WITH JPL AND GSFC CROSSOVER VARIANCE DIFFERENCE

JASON2 – COMPARISON WITH JPL AND GSFC ORBIT COMPARISON

JASON2 – COMPARISON WITH JPL AND GSFC SLR RESIDUALS

Core network RMS SLR residuals	GDR-E : Reduced dynamic orbit	GSFC : Dynamic orbit	JPL : Reduced dynamic orbit
All elevation	0,95cm	1,19 cm	0,87 cm
High elevation	0,76 cm	0,77 cm	0,66 cm

Core network : L7090 L7105 L7810 L7839 L7840 L7941

JASON2 – COMPARISON WITH JPL AND GSFC GEOGRAPHICALLY CORRELATED RADIAL DIFFERENCES

23

JASON2 – COMPARISON WITH JPL AND GSFC GEOGRAPHICALLY CORRELATED RADIAL DIFFERENCES

2 mm 118-days signal JPL **GSFC**

GSFC

.90° 180° -90

2.5

118-day amplitude periodical signal

3.0

3.5

4.0

4.5

5.0

Cones

2,5 mm

21/10/2015

2.0

1.0

0.5

1.5

JASON2 – CONCLUSION

JASON2 GDRE RMS radial component (SLR) : 0,8 cm

GDR-E crossover variance improved of **37 mm²** w.r.t. GDR-D

RMS radial orbit comparison : 7 mm (GSFC) 5 mm (JPL)

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2
 - CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

SLR NETWORK (1)

Core network : L7090 L7105 L7810 L7839 L7840 L7941 Best stations (criteria : RMS SLR residuals)

Station bias analysis : ~monthly mean SLR residuals (JASON2)

SLR NETWORK (2)

Station problem : Yarragadee and Washington show similar mean SLR residuals when observed by different satellites

JASON2 (DORIS+GPS reduced dynamics)

Cones

SLR NETWORK (3)

Possible explanations ?

Measurement bias

 Mail exchanged with Yarragadee Geodetic Observatory "No changes occurred in 2010 that should have had any effect on station position metrics. [...] It is hard to explain the effect."

Earth's crust displacement (hydrological loading effect, oil pumping)

- Rainfall data
- Local mass variation (EWH time series : Boulder, GRGS; mascons)
- GPS stations position time series (IGS Network, Nevada Geodetic Laboratory)

• GDRE STANDARD

- SARAL
- CRYOSAT2
- JASON2
 - CNES / JPL / GSFC COMPARISON
- SLR NETWORK
- CONCLUSION

CONCLUSION

Saral RMS GDR-E radial performance (SLR) : **0,9 cm**

Cryosat2 RMS GDR-E radial performance (SLR): **0,8 cm**

Jason2 RMS GDR-E radial performance (SLR): 0,8 cm

RMS radial orbit comparison : 7 mm (GSFC) 5 mm (JPL)

Overall good quality of SLR core network (6 stations).

Question about Yarragadee and Washington ?

THANK YOU

