How reliable are regional sea level trends

Service Altimetrie & Localisation Precise

OST/ST 2015

October 19-24, 2015 Reston, VA

Introduction

- MSL is an essential indicator of climate change,
- In particular, the trend draws much interest,

+3.31 mm / year Date: 30-Sep-2015

• What about associated uncertainties ?

Uncertainties on global MSL

- Several reviews of uncertainty sources:
 - Ablain et al. 2009 & 2015

			<i>2</i>	13 to 2008
Spatial scales	Temporal scales	Altimetry errors	User requirements	
Global MSL	Long-term evolution (> 10 years)	$< 0.5 \mathrm{mm}\mathrm{year}^{-1}$	$0.3 \mathrm{mm}\mathrm{year}^{-1}$	
	Interannual signals (< 5 years)	< 2 mm over 1 year	0.5 mm over 1 year	
Regional MSL	Annual signals Long-term evolution (> 10 years)	< 1 mm $< 3 \text{ mm year}^{-1}$	Not defined 1 mm year ⁻¹	
	Annual signals	< 1 cm	Not defined	1 of 90%

- Among others (Henry et al., Couhert et al., Legeais et al., ...)
- Results in 0.5 mm/yr on GMSL, higher on RMSL

Objectives

CLS

cnes

- What are the uncertainties at each grid point ?
- Can we estimate a map of uncertainties ?

Mathematical approach

• At each grid point, we solve for the linear system

$$Y = XA + E$$

• The solution is given by

$$A = \left[X^T C^{-1} X \right]^{-1} \left[X^T C^{-1} Y \right]$$

• And the variance-covariance of model parameters

$$\Omega = \left[X^T C^{-1} X \right]^{-1}$$

Allows the determination of model parameter uncertainties

Mathematical approach

- C is the variance-covariance of the errors,
- a common simplification is to use

$$C = \sigma I_n$$

Which is simply the OLS solution (independent and identically distributed errors)

• Here, we populate the C matrix using reasonable assumptions on the error structure (GLS solution) and estimate 95% c.i. on trends

A useful reference: OLS

• Signature of ocean variability

CLS

Uncertainties generally ranging from 0.5 to 1.5 mm/yr

OSTST, 19-24th, October 2015, Reston, VA

Error covariance model

- 3 error models are used:
 - noises,
 - biases,
 - drifts.
- At each grid cell, the total covariance is a sum of these « elementary » covariances.
- Based on a priori assumptions on errors at this point.

Noise

- Accounts for high frequency errors in altimeter data
 - With autocorrelation,
 - Without heteroskedasticity,

Biases

CLS

cnes

• Accounts for uncertainties when linking one mission to another,

Drifts

CLS

cnes

• Accounts for uncertainties on long-term stability of the record

- Mainly due to orbits (Couhert *et al.*, 2015)
- And radiometer drifts (Legeais et al., 2014)

Accounting for system errors

Assumptions:

- Orbit drift (1 mm/yr),
- Tropo drift (0 to 2 mm/yr, latitude dependent),
- biases errors between missions,
- High frequency correlated noise (2 months)

Comparing to OLS solution

CLS

cnes

OSTST, 19-24th, October 2015, Reston, VA

Significant trends

Places where we can reject the hypothesis that there is no trend

67 % of the ocean

OSTST, 19-24th, October 2015, Reston, VA

Including ocean variability

OSTST, 19-24th, October 2015, Reston, VA

CLS

cnes

Conclusions

- Method provides a map of trend uncertainties,
- Systematic uncertainties range between 1 to 3 mm/yr
- More realistic confidence interval than OLS,

- Results depend on the *a priori* description of errors,
 - Il the error model is wrong, the results are
 - Accurate error covariance description is crucial
- With time, the CI will reduce

Outlook

• Introduce noise heteroskedasticty,

i.e. larger errors on TOPEX than Jason-2?

• Introduce natural ocean variability

i.e. given the natural low frequency variability of SL, can we detect climatic trends ?

or are the patterns observed likely to be stable in time (*e.g.* Meyssignac et al. 2012) ?

Questions ?

Service Altimetrie & Localisation Precise

OST/ST 2015

October 19-24, 2015 Reston, VA