Corsica: a multi-mission absolute calibration site

P. Bonnefond^(1,2), P. Exertier⁽¹⁾, O. Laurain⁽¹⁾, A. Guillot⁽³⁾, T. Guinle⁽³⁾, N. Picot⁽³⁾, P. Féménias⁽⁴⁾ ⁽¹⁾OCA/Geoazur, Sophia-Antipolis, France ⁽²⁾Observatoire de Paris/SYRTE, Paris, France ⁽³⁾CNES, Toulouse, France ⁽⁴⁾ESA/ESRIN, Frascati, Italy

OSTST meeting – October 20-23, Reston, VA

Corsica Absolute Altimeters Calibration

E

D

E S

С

R

D

0

Ν

TOPEX/Poseidon ALT-B - Cycle : 240 - Pass : 85

On average for all the studied cycles (237-365) the standard deviation of 10Hz data is 44 mm whatever the skewness compared to 35 mm for MGDR++

5

Corsica Absolute Altimeters

Calibration

T/

R

EP

R O S

EC

N

G

V

5.

0

The SSH drop observed from 10 km offshore is increased in comparison to MGDR++ (5.8 mm/km for RGDR compared to 2.4 mm/km for MGDR++) and is closer to what was found for Jason (~8 mm/km). This indicates a higher coastal contamination that prevents to use T/P data at less than 10 km from the coast. Moreover the number of valid 10 Hz data also decreases when approaching the coast with RGDR V5.0.

History of the Jason-2 SSH bias from Corsica

SSH bias

-SSH bias took **~2 years to stabilize**, mainly affected by unexplained high values of the SSH bias for the early cycles (probably erroneous tide gauges data)

-After these 2 years, very stable (standard deviation of 2 mm) and no significant drift of the averaged values given at each OSTST meeting (<0.1 mm/yr)

SSH bias drift

- SSH bias drift took ~5 years to stabilize
- The yearly drift estimation remains unstable at the 1 mm/yr level, impact of seasonal signals?

Corsica Absolute

Altimeters Calibration

S

B

0

F

H

E

B

A

S

2- with outliers removal

3- with outliers removal and seasonal signals removal

- very small impact of the outliers on the mean value of the SSH bias (few millimeters) but strong improvement of the standard deviation (reduced by ~10 mm)

- the impact of outliers (~15%) is about 3 mm/yr on the SSH bias drift
- the impact of periodic signal removal (mainly the annual) can be at the 1 mm/yr level
- The new generation of orbits gives very close results (JPL, GSFC and GDRE)

S

- very small impact of the outliers on the mean value of the SSH bias (few millimeters) but strong improvement of the standard deviation (reduced by ~10 mm)

- Significant impact of outliers on the SSH bias drift over Corsica and Bass Strait but not over Harvest

Calibration from Corsica

Absolute biases over the whole data sets:

Jason-2: $-7 \pm 3 \text{ mm} (\text{GDR-D})$ Jason-1: $+77 \pm 3 \text{ mm} (\text{GDR-C})$ Jason-1: $+36 \pm 3 \text{ mm} (\text{GDR-E})$ T/P ALT-A: $0 \pm 8 \text{ mm} (\text{MGDR}^{++})$ T/P ALT-B: $0 \pm 4 \text{ mm} (\text{MGDR}^{++})$ T/P POS-1: $-12 \pm 10 \text{ mm} (\text{MGDR}^{++})$ Envisat: $+447 \pm 7 \text{ mm} (\text{GDR-C})$ ERS-2: $-60 \pm 18 \text{ mm} (\text{OPR-2})$ SARAL: $-63 \pm 5 \text{ mm} (\text{IGDR-T})^*$

Range:

•Very stable Jason-2 SSH bias from year to year
•Jason-1 GDR-E range correction improved the consistency of the T/P-Jason legacy but Jason-1 SSH (GDR-E)
remains significantly biased (~4cm). SSB maybe needs to be revisited?

•T/P reprocessing is very encouraging but needs to be fully validated.

Wet tropospheric corrections:

Jason-1&2

No significant drift detected from JMR/GPS and AMR/GPS comparisons. Better agreement between GPS and coastal path delays (EPD) from AMR and JMR

Single site is affected by the GCE and local systematic errors \Rightarrow Multiple calibration sites are needed

 \parallel *SARAL AltiKa SSH bias value (since cycle 8) is from tide gauge data accounting for an instrumental bias of 30 mm

13

С

U

S

0 N

