- □ Objectives: Establish the link between Altimetry experts and applications (MSL, mesoscale, etc)
- New insights about errors in the altimeter system
- \Rightarrow From experts to applications
- User needs and requirements in terms of errors, including formalism of errors
- \Rightarrow From applications to experts
- □ Splinter divided into 2 parts :
- 1) Mea Sea Level errors: 3 talks / 2posters
- 2) Short wavelength errors : 2 talks / 2 posters
- 3) Instrumental errors : 1 talk

Mean Sea Level errors

L. Zawadzki et al. : Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 versus Sentinel-3a

 \Rightarrow What would be the impact on the GMSL of using S3-A instead of Jason-3 as reference mission ?

•Linking Sentinel-3 MSL time series to Jason-2 has a strong impact on the global (and regional) MSL uncertainty, mainly due to the absence of a calibration phase.

• Changing the historical TOPEX/Jason orbit for Sentinel-3a orbit would therefore exceed user requirements over 10 years even though it is only one component of MSL error budget (Ablain et al. 2015).

□ M. Scharffenberg et al. : Uncertainty estimates of altimetric Global Mean Sea Level timeseries ⇒ Impact of the STORM/NCEP model [von Storch et al. 2012] as synthetic truth to test the effects of applying different averaging methods.

 \Rightarrow This work is an update of O. Henry et al., 2013

 \Rightarrow depending on the method used, the uncertainties of the GMSL estimates needs to be considered larger by up to +6 mm

Mean Sea Level errors

□ P. Prandi et al.: How reliable are regional sea level trends ?
⇒ Objective: provide a map of uncertainties of regional MSL trends trends

• Systematic uncertainties range between 1 to 3 mm/yr

 Results depend on the *a priori* description of errors : if the error model is wrong, the results are
⇒ Accurate error covariance description is crucial

• With time, the CI will reduce

Providing this map was a recommendation of last OSTST

Short wavelength errors

□ P. Thibaut et al. : Characterization of the Altimeter Mission Performances over Ocean: Comparison and Interpretation

⇒ Most of past/present altimeter missions have been looked at and compared with the same processing applied: Performances have been derived using different metrics

⇒ 20Hz std and PSD noise level are strictly equivalent at low SWH and coherent with simulations ⇒PSD noise level for high SWH doesn't represent the instrumental noise. Does SWH/Swell introduce correlated errors in the estimates ?

⇒ Very good SLA performances of CS-2 SAR but also of SARAL (Ka band / 40 Hz), even better SWH performances with Saral

Short wavelength errors

E.D. Zaron et al. : identification and reduction of retracker-related noise in altimeter-derived seasurface height measurements

 \Rightarrow An empirical approach to reducing the retracker-related SSH error was implemented, based on analysis of J1-J2 during the J2 cal/val orbit phase.

 \Rightarrow The high-wavenumber SSH noise floor is reduced by about 2cm₂, depending on SWH.

Instrumental errors

D. Salvatore et al. : Seasonal Effects on the Pitch Measurements for Cryosat-2

 \Rightarrow Thanks to pitch mispointing computed from Stack, a sinusoidal pattern in the Star Tracker estimation of the pitch mispointing has been detected (potentially correlated to sun illumination conditions).

 \Rightarrow After removal of the sinusoidal pattern, the estimation of the pitch from Star Tracker and Stack are pretty consistent (around 3 millideg)

 \Rightarrow It is essential to calibrate also the roll mispointing (that can be affected in the same way by solar illumination).

 \Rightarrow We recommend to perform the same exercise routinely for Sentinel-3, as long as for the roll.

Posters

- Labroue et al. Sentinel-3 Delay Doppler Altimeter: a New Insight on High Resolution Ocean Dynamics
- •M. Scharffenberg: Sea level ECV quality assessment via global ocean model assimilation
- H. Dieng et al. : Sea level budget over 2005-2013: Missing contributions and data errors
- Laura A. R. Etcheverry et al.: Satellite altimetry data validation in San Matias Gulf, Argentina

Conclusions

□ from last OSTST :

- new insights allowing a better description of the altimeter errors
- 2 recommendations of last OSTST have been answered:
- \Rightarrow errors are provided as function of wavelength

 \Rightarrow the errors on regional sea level trends have been characterized and a map has been provided

□ Recommendation for the next OSTST:

- feedbacks from end-users to better characterize the error for their studies are very encouraged !

- the total propagation of measurements errors into final products should be further studied.