

Wet Tropospheric Correction (WTC): A stratified approach applied to Neural Networks PEA(HI

B. Picard, M-L Fréry, M.Siméon (CLS) S. LeGac (CNES)

The wet tropospheric correction (WTC) is a major source of uncertainty in altimetry budget error, due to its large spatial and temporal variability: this is why the main altimetry missions include a microwave radiometer (MR) The commonly agreed requirement on WTC for current missions is to retrieve WTC with an error better than 1cm rms.

JPL for NASA/CNES (Jason-2/Jason-3) missions on one hand and CLS/IPSL for CNES (AltiKa) and ESA (Sentinel-3) missions on the other hand based their retrievals on similar approaches with still identified differences.

In the frame of CNES project PEACHI-J3, we defined a combined approach using the ECMWF analysis and the neural network in a stratified scheme. A sensitivity study is performed on the range definition of wind speed and WTC. Stratified-NN WTC are computed and applied to Jason-3 and Jason-2.

PEACHI Jason-3

PEACHI = Prototype for Expertise in Altimetry, Coastal, Hydrology and Ice

The prototype fully supported by CNES is seen as a laboratory for processing Jason-3 data and delivering experimental products with foreseen added-value.

Prime objective of PEACHI Jason-3 is to ensure and demonstrate the quality of new algorithms before possible implementation into Jason-3 operational ground segment.

Two different approaches

JPL and CLS approaches to retrieve the wet tropospheric correction are mostly similar: an empirical relation is established between simulated TB and a geophysical database. ... But **somehow different** in:

the settings of the algorithm

To adapt Neural Networks to the stratified approach

Two main issues for a stratified approach applied to NN: **no interpolation possible** between NN coefficients -> jumps on WTC **under-populated domains** \rightarrow degraded performance of the retrieval Solutions:

overlapping domains

Performance assessment on Jason-3

WTC PEACHI (CLS) - WTC GDR (JPL) [cm]

PEACHI more wet on inter-tropical regions

PEACHI dryer at high latitudes

VAR_SSH_WithPEACHI (CLS) - VAR_SSH_WithGDR (JPL) [cm²] improvements of PEACHI wrt GDR ~ -0.20 cm²

potential impact of TB @ 34 GHz drift from launch to July 2016

Same approach applied on Jason-2

Expected results on Jason-3 with sufficient amount of data:

-improvement at high latitudes -improvement on upwelling regions -degradation on classes 7/8 ?

PEACHI on Jason-2

Conclusion & Perspectives

the PEACHI WTC retrieved using a stratified approach applied to Neural Networks shows similar performances wrt to GDR WTC on Jason-2. Some **improvements** shown at high latitudes where PEACHI WTC is dryer than GDR WTC Some **improvements** shown on specific regions (Mediterranean sea, upwelling) Some degradations shown on specific regions (surface ?): need for better definition of class 7/8 ?

The TB@34 GHz could be corrected using J2/J3 bias monitoring

Contact : bpicard@cls.fr