Warming of the global ocean : consistency of thermal and altimetric fields and dominance of descending density surfaces
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ABSTRACT: The multidecadal warming and interannual and Here we consider ocean potential temperature (9) change at fixed depths due to heaving PURE WARMING EFFECT FOR WARM&SALINE WATER OVER
decadal heat content changes in the upper ocean are investigated |and spice variability: ‘heaving’ is an Eulerian measure of the temperature change at fixed COLD&FRESH =0 5 . R
from observational data sets (NODC & EN4) and from a modeled ~ |depths, and implies vertical migration of surfaces of constant 6, either adiabatically (as ® /
state estimate (SODA). Multidecadal warming is dominated by a | with changes in wind forcing of a gyre circulation), or through diabatic heat flux : ) vl s
contribution from deepening of the mid-thermocline isopycnals | divergence. ‘Spice’ variability is the change in 8 and S upon-a fixed neutral- density /
(resulting in an expansion of the subtropical mode water volume) |surface (Bindoff and McDougall, 1994). In the Bindoff-McDougall decomposition of 0 /
rather than shifts of the temperature/salinity relationship. The | (similarly for salinity S) changes at depth z (d8/dt|,) /7 e
multidecadal isopycnal sinking has been the strongest over the dé/dt|, =de/dt|,- dz/dt|, d6/dz "
southern basins. On interannual to decadal scales, sinking and are divided into a change along the neutral density surface (the 1st term on right) and due -
shoaling of density surfaces dominates ocean heat content to vertical movement of the neutral density surface (dz/dt) (the 2nd term on right). Itis
changes, while the contribution from temperature changes along |linearized with respect to vertical displacements and approximates d8/dz from the (a) In a 0-S diagram warming takes parcel 1 to 2, now parcel 2 appears cooler (and fresher) than the parcel
655 X o . N X X with the same density (point 3) on the original thermacline (solid blue).
density surfaces decreases as time scales shorten. Decomposition |gridded data.. Softwar.e available at http.//www,teos-lO.Qrg/preteoslo,software/
of ocean heat content changes into heaving and isopycnal neutral_densityhtml is used to compute the neutral density values for each data set (b) The same warming effect in a z-plane. Warming (1 to 2) moves the density from 3 to 4. Parcel 5 with the
temperature changes is shown to provide insight to the satellite | (Jackett and McDougall, 1997; Bindoff and MacDougall, 1994). Heat content total, heave  same density as before warming (parcel 3) is much cooler than the original parcel (1): Parcel 5 has a
sea surface height measurements of the last two decades. and spice are computed by multiplying the temperatures by the gridpoint volume, density, corresponding temperature at point 6. Connecting the lines from 1 and 6 to the salinity curve would show
and heat capacity of sea water. that the parcel 6 is also fresher than the parcel 1.
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Sinking-shoaling trends (positive downward) of potential density surfaces 26.0, 27.0 and 27.3 for
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per 50years. Trend values significant at 95% level are stippled. Our analysis of ocean heat content reveals bow the global warming effec.t during the last 50+ years is dlsmhut«.ad in the

upper ocean above the permanent pycnocline, where the largest heat gain has occurred. We find that the multi-decadal

global warming has a robust diagnostic: a wide-spread vigorous sinking of subtropical mid-thermocline isopycnals
reaching nearly 100m in 50 years in some locations. The dominant contribution to the fixed depth heat content comes
from this sinking (=heaving) of isopycnals where the subtropical mode waters reside. Confidence in the basin-average and
zonal-average results arises from the monotonic nature of the OHC increase in most of the world ocean.
This analysis cannot immediately discriminate between dynamically induced adiabatic vertical heaving (for example,
subtropical gyre spin-up or subpolar gyre spin-down), changes in lateral advection (for example, in the zonal-mean
overturning circulation) and thermodynamic forcing (for example, diabatic change in water-mass renewal due either to
warmer or weaker winter winds). However the vertical and lateral structure of 8 and S variability as presented here, and
their temporal structure provide a framework to analyze both models and the evolving high-resolution ocean observations
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_ the Pacific OHC contains large changes from isopycnal sinking and shoaling episodes due to PDO and ENSO variability. The
-09 -07 -05 -03 -0.1 0. 0.3 0.5 0.7 0.9 amplitude associated with these regional OHC variations rival the basin average multidecadal trends. On decadal and
Potential temperature trend °C per 50 years on potential density surface =27.0 for NODC, EN4 and longer time scales the spice component shows strength away from equatorial regions in all basins, but at interannual
SODA for period 1957-2011. Trend values significant at 95% level are stippled. scales its importance is limited. NAO-related variability is a strong part of North Atlantic variability, and its red frequency

spectrum makes discrimination of anthropogenic global warming trends difficult.



