

A REAL OF A

Sentinel-6/Jason-CS News & developments

Pierrik Vuilleumier & Parag Vaze

ESA/ESTEC (NASA-JPL)

ESA UNCLASSIFIED - For Official Use

European Space Agency

Programme status

• Funding for two satellites

- ESA GSC-3 + EC MFF programmes already in place.
- Entry into force of the EUMETSAT programme.
- FY16 NASA budget approval (AMR-C, RO, LRA, Launcher).
- Inter-agencies agreements
 - Three parties/four partners MOU
 - Yet to be finalised text to be approved by ESA/NASA/NOAA/EUM.
 - MAG open points.
 - ESA/EUMETSAT Implementing arrangement
 - Fixed contribution to the Satellite A model.
 - About one third of the Satellite B model.
 - ESA/CNES cooperation agreement
 - Support agreement for Sentinel-6 (System, topography, POD).

ESA UNCLASSIFIED - For Official Use

p.vuilleumier| OSTST 2016 | Slide 2

The set of th

Project status

- Full space segment consortium under contract
 - For the two Satellites A & B procured at the same time
- Common GNSS POD receiver with Sentinels 123 CD
 - Also tracking Galileo
- Collaboration with Sentinel-3 CD for procuring DORIS
 - Same key person at ESTEC for both projects
- Anticipated manufacturing
 - Structure metallic parts.
 - Honeycomb panels
- Upcoming Satellite CDR
 - Review kick-off March 29th at ESTEC
 - Review collocation May 16th-18th

ESA UNCLASSIFIED - For Official Use

p.vuilleumier| OSTST 2016 | Slide 3

_ II ⊾ := = + II = ≝ _ II II = = = H = Ø II = II ₩ IV

Project status (continued)

- Level 1b and Level 2 GPP under contract
 - Including associated mission performance simulator
 - Preliminary delivery to EUMETSAT for level 1b

Launch date

- Agreed among the parties
- November 2020 with two months of contingency
- Satellite B model in 2025

ESA UNCLASSIFIED - For Official Use

p.vuilleumier| OSTST 2016 | Slide 4

Mission improvements

- Radiation monitor
 - Engineering data for housekeeping
- OLTC memory increase
 - Lesson learned from Sentinel-3 commissioning
- Improved USO crystal screening
 - Jason-3 POD results demonstrate the advantage of low dose rate screening.
 - CNES and ESA are contributing to achieve that for Sentinel-6.
- Altimeter and POD driven by same USO
 - Traditional architecture with DORIS USO driving the altimeter.
 - Alignment with S3 to also drive the GNSS receiver with DORIS USO.
 - Easier error budgeting.
 - Capability to monitor the new USO against GPS system.

ESA UNCLASSIFIED - For Official Use

p.vuilleumier| OSTST 2016 | Slide 5

= II 🖕 ## ## II 💻 🚝 == II II = = = ## 🛶 🔯 II == ## II 💥 IVI

High frequency radiometer add-on

- Three additional channels: 90GHz, 130GHz and 166GHz
 - Experimental, non redundant
- Same reflector
 - Dedicated feed
 - Offset footprint
- Independent electronics
 - Dedicated interfaces
- Not part of the mission products
 - At least at first
- Opportunity for new science

ESA UNCLASSIFIED - For Official Use

p.vuilleumier| OSTST 2016 | Slide 6

AMR-C Enhanced Measurement Stability

- Radiometer drifts & jumps directly affect globally averaged sea level observations, leading to uncertainty many times greater than the trend being measured
- Based upon OSTST recommendations, a specific requirement has been established to maintain the stability of the global mean sea level measurements (in the ALT-NTC Level 2 products) to levels established to within 1 mm (standard error) averaged over any one year period.

AMR-C: Supplemental Calibration System (SCS) (1/2)

- Project studies concluded that an in-flight Supplemental Calibration Subsystem (SCS) for the AMR would be the only way to confidently meet this requirement
- SCS applies a proven technique using of a periodic, 2point radiometric calibration by redirecting the main beam to cold & warm calibration targets using a scanning scan mirror
- Build approach is to design a high reliability, low risk system minimizing potential single-point failure elements
- After a deep engineering effort: All credible designs involved mechanism with residual potential single fault elements: gears and bearing
 - Gear and bearing design is straightforward and has excellent reliability record for many high value flight applications
 - Project is applying maximum risk mitigations (e.g., robust design margins, strict adherence to critical manufacturing processes, life-testing, telemetering of key functional parameters, graceful degradation, etc...)
- <u>With all these efforts, a very small likelihood (but non-</u> OSTST 2016 Zero) risk for in flight^{ot} fraiture exists

AMR-C: Supplemental Calibration System (SCS) (2/2)

- The project has developed (at significant cost), a robust, low risk design maximizing the use of high reliability and heritage elements.
- The SCS provides a significant enhancement in the measurement performance and responds to a long standing recommendation from the OSTST
- The project believes the science benefits outweigh the low likelihood, residual risk for a potential inflight failure of the AMR-C
- NASA/JPL engineering authorities have reviewed the current design and will apply the proper oversight and scrutiny of the on-going engineering development and test process prior to flight
- OSTST endorsement of the science utility of this enhancement outweighing the residual risk is a key aspect for continuing the development and flight of this important capability

Backup

Not for Public Release or Redistribution. This document has been reviewed and determined not to contain export controlled technical data.

- 2009: OSTST recommends project to study feasibility of stability requirement:
 - Pages 3 & 4 of 2009 Meeting report: <u>http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2009/OSTST_meeting_report_final.pdf</u>
- 2010: OSTST recommends that future missions adopt a system climate stability requirement:
 - Pages 6 & 7 of 2010 Report: <u>http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2010/oral/final%20report/10_lisbon_OSTST_meeting_report.pdf</u>
- 2011: Complete implementation of calibrator on Jason-3 was outside the project resources, so OSTST recommended cold sky look on Jason-3 which improves ability to detect and correct drift on-orbit
 - Pages 3 & 4 of 2011 report
- 2011: Calibration targets are under consideration for Jason-CS, OSTST maintains desire for stability requirement
 - R. Francis plenary talk
 - Page 8: <u>http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/OSTST_2011_SanDiego_final_report.pdf</u>
- 2013: Long-term stability requirement adopted for Jason-CS:
 - Page 7: <u>http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2013/oral/OSTST_2013_Meeting_Report.pdf</u>
 - Radiometer will include calibrator to meet stability requirement
- 2014: OSTST expresses appreciation for inclusion of long-term stability implementation on Jason-CS:
 - page 4: <u>http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2014/OSTST_2014_Meeting_Report.pdf</u>