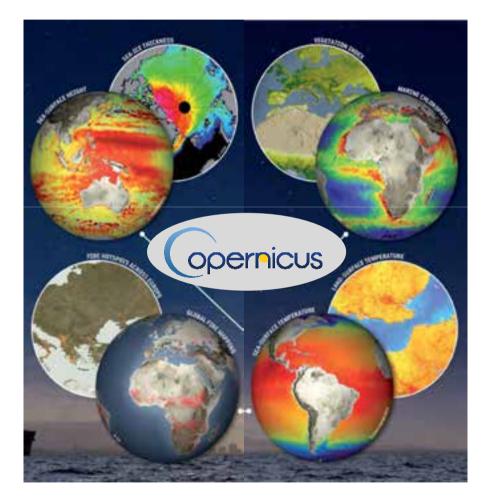


The Copernicus Sentinel-3 Mission: Status and First Results

Craig Donlon Sentinel-3 Mission Scientist (ESA/ESTEC) Francios Boy (CNES), Remko Scharroo (EUMETSAT) Susanne Mecklenburg (ESA/ESRIN), Hilary Wilson (EUMETSAT) Dominique Montero (EUMETSAT), P. Femenias (ESA/ESRIN)

A new Era of altimetry, New challenges, La Rochelle, France 31st October 2016


Outline

- Sentinel-3A
- Sentinel-3B
- Flexible approach
 - L1A
 - Orbit change
 - Potential Tandem Mission

- Current status
- Performance (CNES)

*

ESA UNCLASSIFIED - For Official Use

= II 🛌 == += II == 🚝 == II II == == == 💷 II == II == II 💥

Copernicus Overview

In-situ component not represented here

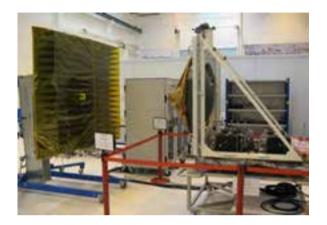
_ II ⊾ II = + II = ≝ _ II II = _ II = M II _ II = K ||

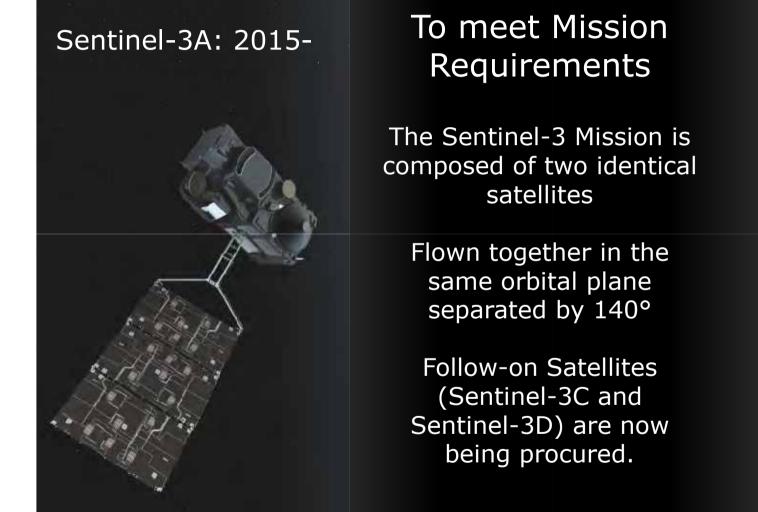
Sentinel-3: A bigger Picture for Copernicus

ESA UNCLASSIFIED - For Official Use

C.Donlon | 31/10/2016 | Slide 4

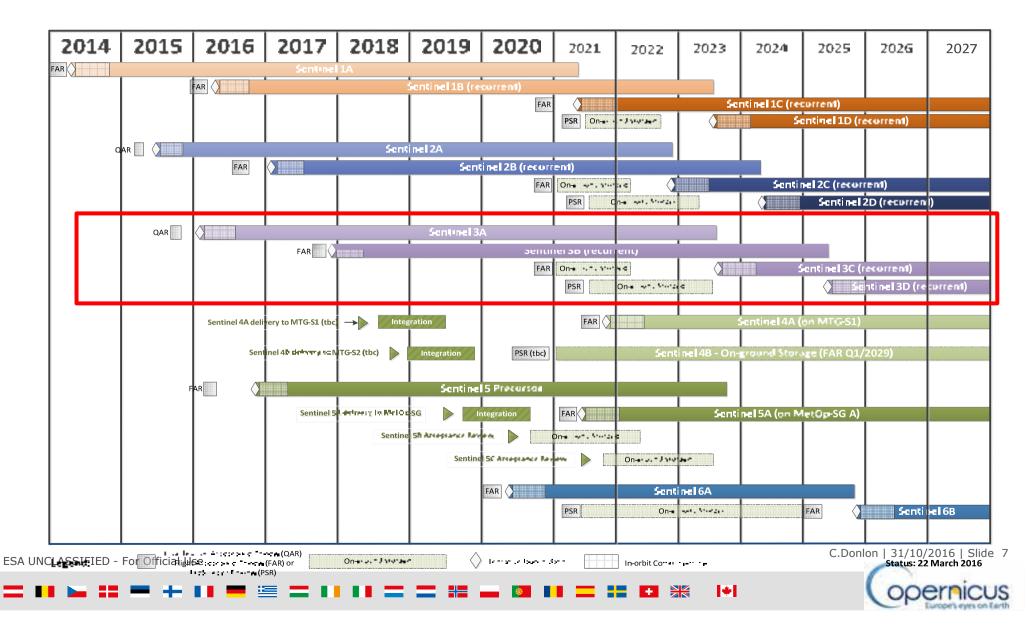
Opernicus


Sentinel-3A STM



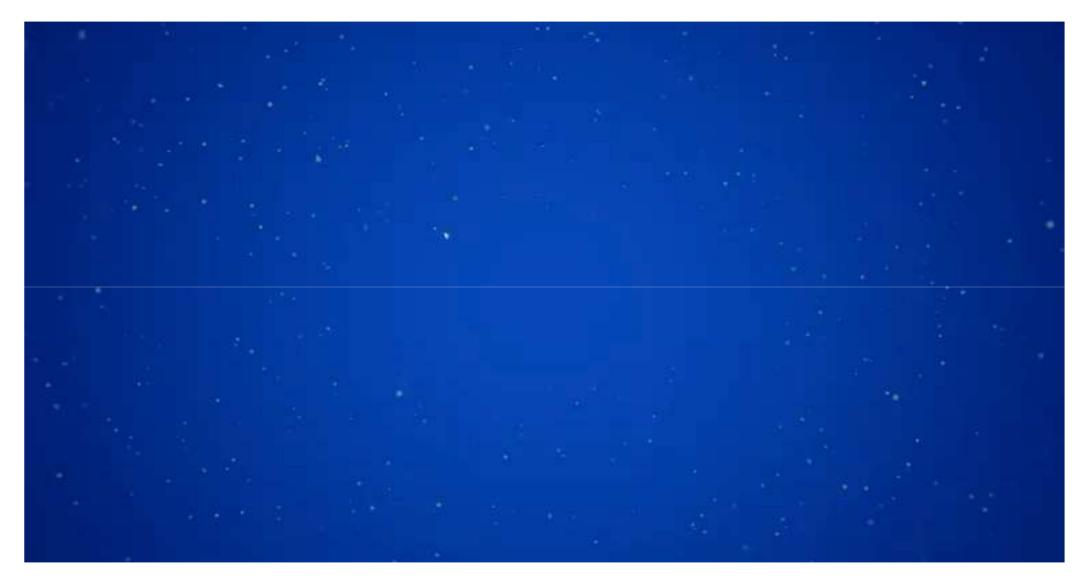
A multi-Satellite mission

ESA UNCLASSIFIED - For Official Use


*

opernicus

□ II ▶ II ■ + II ■ ⊆ II II = II = II II ×


The Copernicus Sentinel Deployment Schedule

Launch campaign Plesetsk, Russia... 🧶 EUMETSAT 🧶 CSA

ESA UNCLASSIFIED - For Official Use

C.Donlon | 31/10/2016 | Slide 8

*

Sentinel-3A Launched 16th February 2016 from Plesetsk, Russia, @17:57 GMT

ESA UNCLASSIFIED - For Official Use

C.Donlon | 31/10/2016 | Slide 9

Sentinel-3a launch from Plesetsk Cosmod Formersar 16th February 2016 (Credit: Antero Isola)

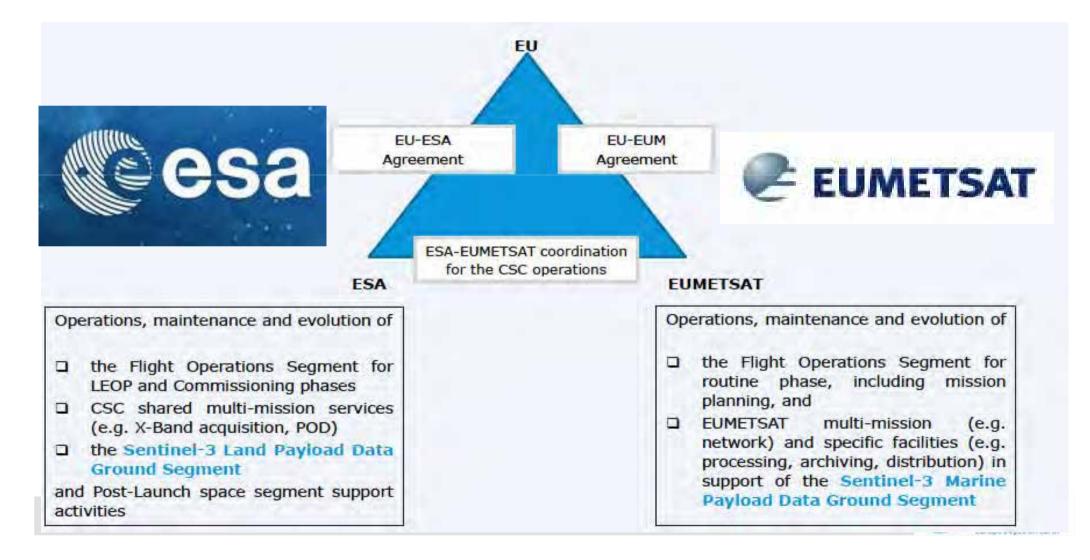
ESA UNCLASSIFIED - For Official Use

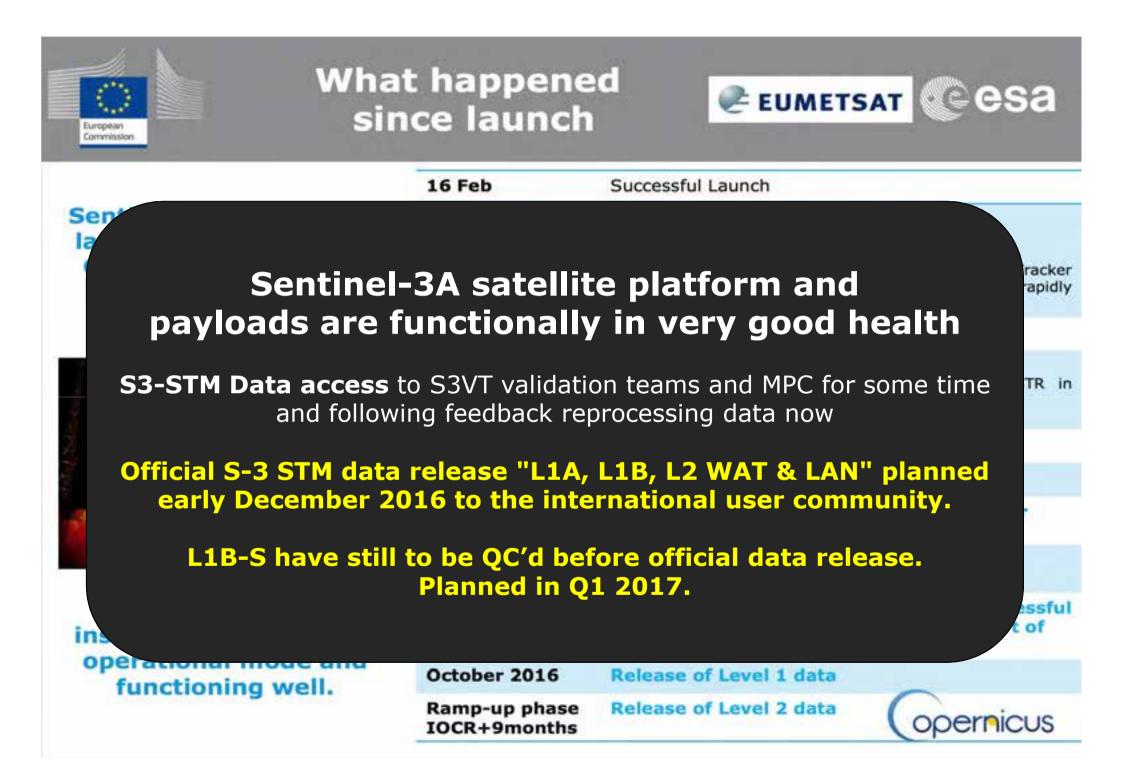
C.Donlon | 31/10/2016 | Slide 10

*

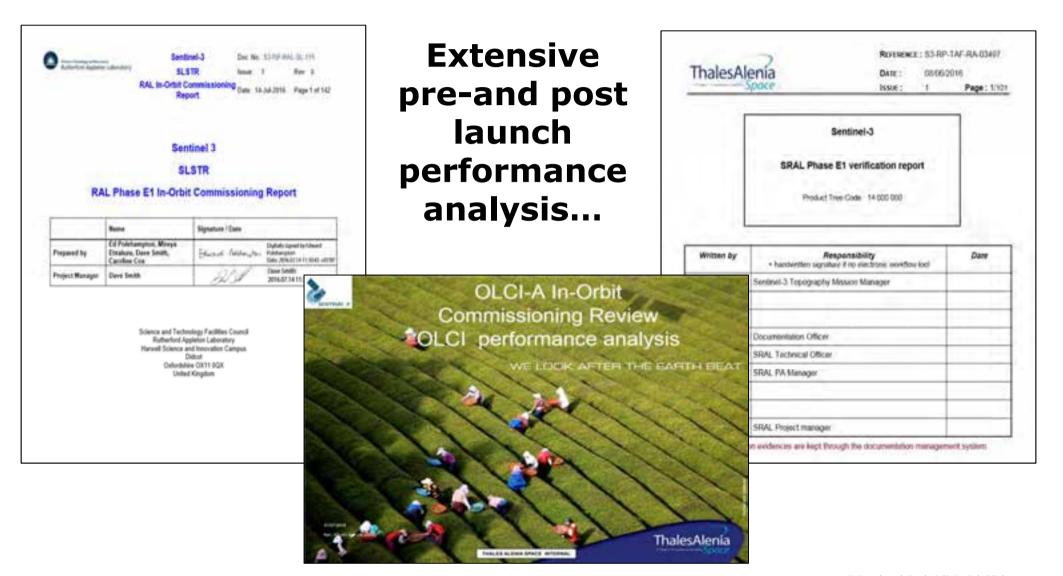
And finally on-orbit...

ESA UNCLASSIFIED - For Official Use


C.Donlon | 31/10/2016 | Slide 11



ESA & EUMETSAT share operations


- **EU Copernicus Regulation**: full, open and free data policy, defining responsibilities for ESA and EUMETSAT and overall financial envelope
- Dedicated EU-ESA and EU-EUMETSAT Copernicus agreements

Payload characterization...

ESA UNCLASSIFIED - For Official Use

C.Donlon | 31/10/2016 | Slide 14

_ II ⊨ II = + II = ≝ _ II II = _ II = II = II II . . .

Operational Core Products - full technical documentation at https://sentinel.esa.int

sions - User Guides - Technical Guides - Thematic Areas - Data		©esa 👌	€ EUMETSAT		
are here - ritanus - Unar Galatter - Serviced 3 OLCI		SEA	TINEL 3		
Sentinel 3 Technical Documents	User Guides				
thek-3 optical product specification will be available in 2014.	Other Conduct Plante				
oduct Specification Documents	Section 1 SAR Section 3 MSR				
SSC Seminar-3 Wordenta Definition	Section 3 OLCI				
ARES Sentivels POR Service File Format Scientification	Applications Product System	GMES Space Component			
fuel Classification	Programming Lawrence Researcherstern	Sentinel-3 Payload D	Sentinel-3 Payload Data Ground Segment		
Noter Veptmet	Contrage	Products Definition Document			
Netromental Connection	Naming Consentant Osta Formata Defailteen	Products Defin	ition Document		
Curristence Chellik Milde Cape Currection	Decomposition and a second				
Nerskyferte Correctorie iver Case 1 watere	Senten-1 State Senten-1 Sprangy				
Unreseptivite connections - Bright Websie Seet Contention	Internet 3 Advantes Decement 1 Deces				
Donni Colour Products in Case 1 assists					
Sourn Colour - Turbol Water Postosynthetizally Active Radiation	 Key Resources 				
AMAR	· SA-OLES Technical Descentions				
24.Cl Terministi Chimipphyli Islans Taylogh Curriefun over land	 E2 Handbook 				
Taxinapativnity Penalizeta	 SS-OLCI Data Availability and Gaabiy Toola 				
Mandative Attrivupliante Canonchine	 Assoryme and Alterrylations 	EUM. Doc. No.: EUMLEO-SEN3/TEN/15/7	29918		
	W. Copernicus Services	EUM Issue 1 IA EUM Date 166 September 2013			

+

*

Technical Guides Technical Guiles Home (Sentinei 1 SAV (Sentinei 3 MS) Sentinei 3 O(G1) Sentinei 3 SLSTR

ESA UNCLASSIFIED - For Official Use

Thematic Areaa Termatic Areas Hower | Land Mustering | Mexics Mustering Averaginetic Mustering | Transporter Management

C.Donlon | 31/10/2016 | Slide 15

User interaction and feedback at all levels...

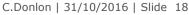
Copernicus

EUMETSAT CSa

European Space Agency

Sentinel-3B

A new Era of altimetry, New challenges, La Rochelle, France 31st October 2016


European Commission

Sentinel-3B: status

- SRAL and PCDU (Power Conditioning and Distribution Unit) panels have been finalised, the SRAL antenna has been integrated onto the platform.
- MWR mechanical/electrical integration to the Satellite is in progress.
- Mechanical and electrical integration of DORIS into Sentinel-3B is in progress
- Sentinel-3B FAR planned for Sept-Oct 2017, still compatible with a launch before end 2017
- Flight Acceptance Review October 2017
- Launch on Rockot from Plesetsk in late 2017.

ESA UNCLASSIFIED - For Official Use

User driven evolution...

• The science of today become the operations of tomorrow...

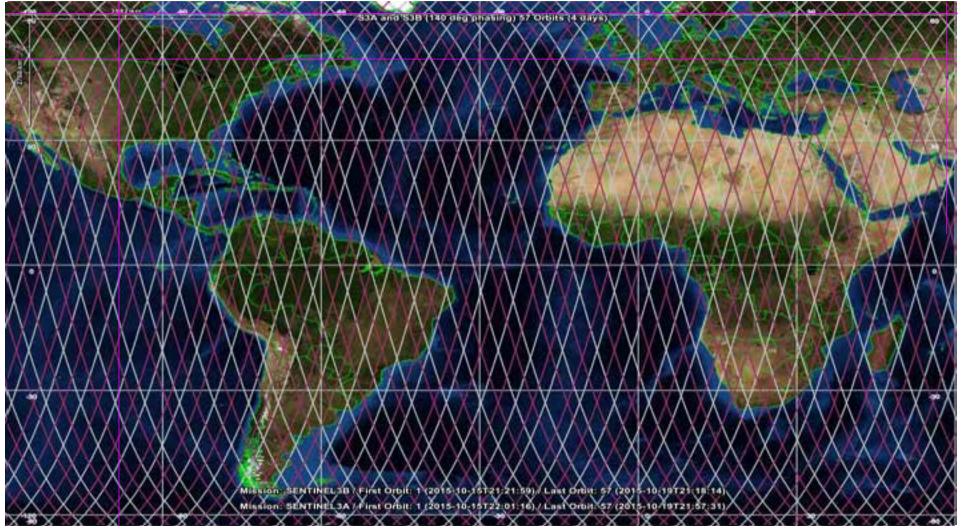
- Several elements of user driven evolution for the S3A mission have emerged and have been addressed:
 - 100% SRAL SAR coverage instead of just coastal zones and sea ice → better SNR
 - New products requested including L1A SAR data → Performance Evolution
 - Orbit phase optimization for topography mission → better sampling of mesoscale structure
- Each has been taken up by the EC following user request and extensive technical and programmatic discussions with ESA and EUMETSAT
- An excellent process has been established to respond effectively and relatively quickly to these large mission changes.

Product Level	Product Description	Relevance for
L1A	Unpacked L0 data processed to engineering parameters with geo-location information	SAR processing specialists allowing fundamental studies on SAR processing such as Doppler beam formation and calibration studies using ground-based Transponders
L1B-S	Geo-located, Calibrated gathered azimuth formed complex (I and Q) power echoes after slant/Doppler range correction	geophysical retrieval algorithm developers (over ocean, land and ice surfaces), surface characterisations studies (e.g. impact of sea state bias, wave directional effects etc) and QC systems
L1B	Geo-located, Calibrated Multi- looked power waveforms	geophysical retrieval algorithm developers and QC systems

*

ESA UNCLASSIFIED - For Official Use

Open Source Delay Doppler Altimeter Studio (DeDop) tool http://www.dedop.org

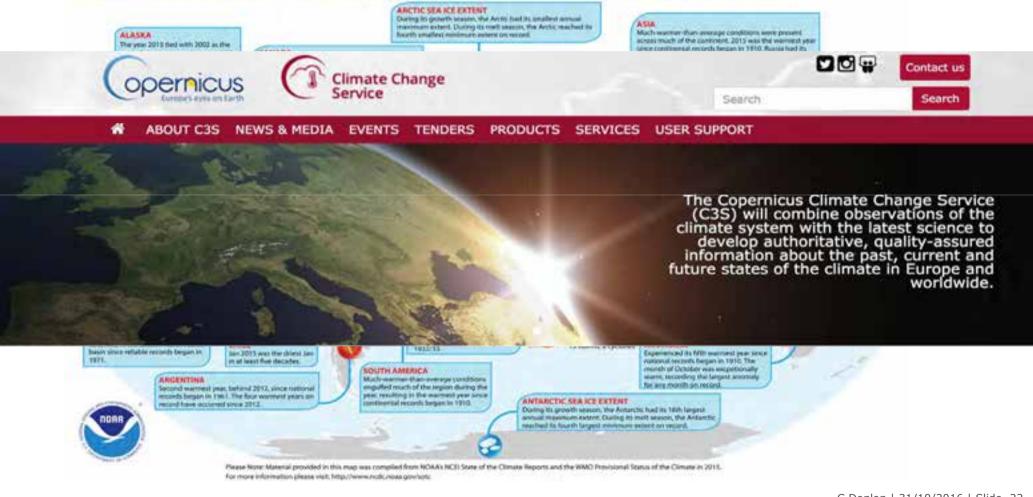


ESA UNCLASSIFIED - For Official Use

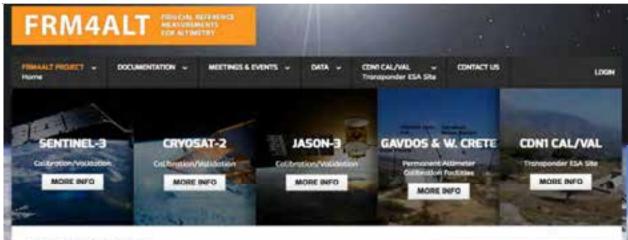
= •• **•• •• •• •• •• •• ••** = = = •• •• •• •• = = •• •• •• ••

Optimising the Constellation: Sentine 3B phasing to 140° (instead of 180°) after 4 days

ESA UNCLASSIFIED - For Official Use


C.Donlon | 31/10/2016 | Slide 21

S3 also responds to the <u>NEW</u> EUMETSAT C3S climate service...


Selected Significant Climate Anomalies and Events in 2015

ESA UNCLASSIFIED - For Official Use

http://www.ncdc.noaa.gov/sotc/service/global/extremes/201513.gif

C.Donlon | 31/10/2016 | Slide 22

FRM4ALT PROJECT

AIM OF THE FRM4ALT PROJECT

Procise measurements of the surface repriprintry of the ocean, onto of continental, ecters are made shrough satellite alignetry missions all over the globe. An orbiting estellite embre electromagnetic values to the surface of the Tarth. Then the satellite absorbes onto processes the reflected agoats, their time of enrival, and their LATEST NEWS

NAMES CALIFICATI

Transponder sailbration at the CDAS ESA. Attimuter Calibration Site, for:

fi-du-cial (*adj***)** Regarded or employed as a standard of reference, as in surveying.

[Late Latin fdcilis, from Latin fdcia, *trust*, from fdere, *to trust*; seebheidh- in Indo-European roots.]

Establish and demonstrate SI traceability of Fiducial Reference Measurements (FRM) and their use for satellite derived altimeter calibration and validation.

http://www.frm4alt.eu

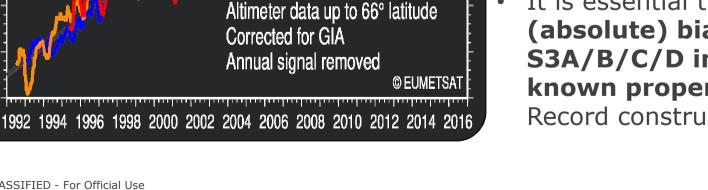
ESA UNCLASSIFIED - For Official Use

= II 🛌 == ++ II == 🚝 == II II == == == 🖬 🛶 💵 II == == 👯 🙌

Multi-satellite Climate data Records

he bedrafter berleicher bester bes

Overall trend: 3.14 mm/yr



EUMETSAT

The S3 mission includes 4 satellites

- Even though S3A and S3B are practically identical in design, it is anticipated that differences in performance of payload instruments will exist
- It is essential that **relative** (absolute) bias between S3A/B/C/D instruments are known properly for Climate Data Record construction

*

ESA UNCLASSIFIED - For Official Use

60

50 -

40 -

30

20

10

0.

-10

-20

-30

Global mean sea level (mm)

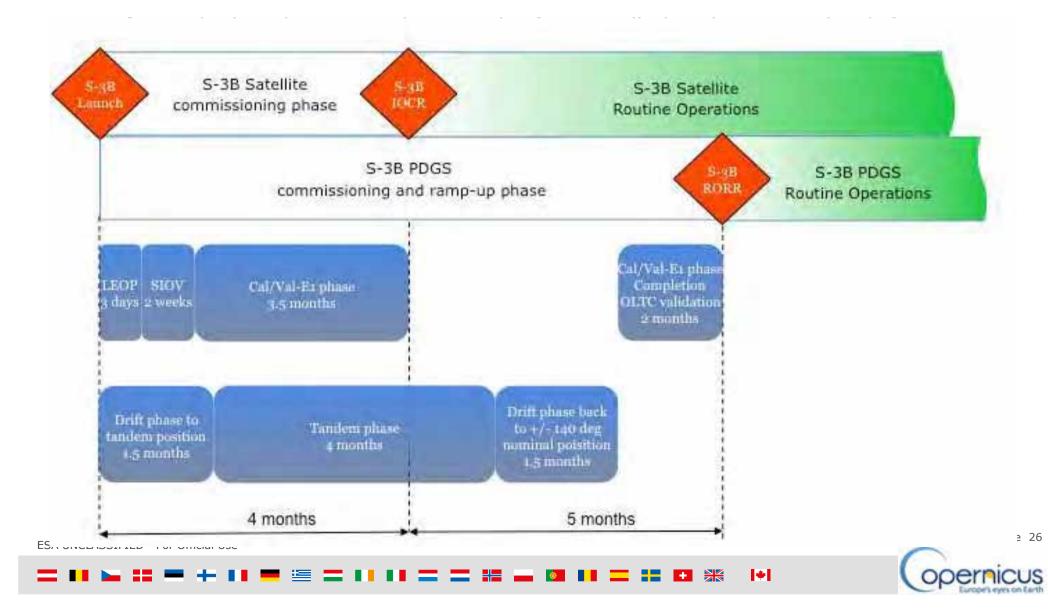
Jason-1 Jason-2

Jason-3

CryoSat-2

SARA

GFO


esa

S3 cross-satellite calibration (linking EUMETSAT CC CSA error): S3A/B Tandem flight feasibility

- There is a significant correlation between **end-to-end mission measurement uncertainties**:
 - Uncertainty due to geophysical ocean space and time variability (especially in regions dominated by mesoscale structure, 1-10 days, <10-50 km)
 - Uncertainty due to atmospheric space and time variability
- **A tandem phase** for the S3 Mission was studied at PDR
- Flying S3A and S3B close (eg. 30s) on the same ground track (+/- 1km) together minimizes both of these aspects and maximizes the correlation between mission measurement errors
- **GCOS Satellite Climate Monitoring Principles** (GCMP) requests a tandem flight for all satellite instruments
- This is **exactly the approach adopted routinely by the JASON altimeter time series** and stabilizes the Sea Level data set (S3 uses a transponder for range but not sigma-0)
- Exploratory studies to investigate the possibility of a limited duration (3-6 month) calibration tandem between S3A and S3B during Phase E1 would verify feasibility

Potential (not yet agreed) approach to a limited duration S3 Tandem phase during Phase-E1

EUMETSAT CSa

Conclusions

- Successful launch of Sentinel-3A on 16th February 2016
- Satellite and payload is stable and fully commissioned
- All ground segment facilities supporting Sentinel-3 are being commissioned both at ESA and EUMETSAT to full operations
- Validation activities are well advanced and dedicated projects are in place to develop a culture of FRM validation.
- Sentinel-3B Satellite integration well advanced. On track for a launch in late 2017.
- Contract signed with Thales Alenia Space to build Sentinel-3C and -3D Satellites on 9th February 2016
 - Delivery of the C and D models by end 2021, well in advance compared to the predicted lifetime of the A and B models (7 years min from start of operations)
- With the inclusion of the C and D models to the fleet of Sentinel-3 satellite, mission continuity is ensured for at least 25 years from the launch of the first Satellite
- Today we will see many talks and posters on the the early results and performance of the S3A-STM...starting with Francios Boy!

Thank You – any Questions Contact: <u>Craig.Donlon@esa.int</u>

ESA UNCLASSIFIED - For Official Use

C.Donlon | 31/10/2016 | Slide 28

354.

Sentinel-3 Phase E1 Results

La Rochelle – France 31 October 2016

Sentinel-3 Phase E1

Phase E1 = 5 months after launch

SRAL Swith-on: March, 1st

First week after Switch-On

Functionnal and verification tests:

- Specific sequence to cover all data acquisition modes (LRM & SAR, CL & OL)
- CAL1/CAL2 sequences over 3 orbits to conduct a detailed calibration analysis by TAS

Cycle 1 (partial) and Cycle 2

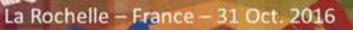
LRM Closed-loop:

 With a SAR CL mode acquisition box over Pacific Ocean to analyse the continuity between SAR Mode and LRM

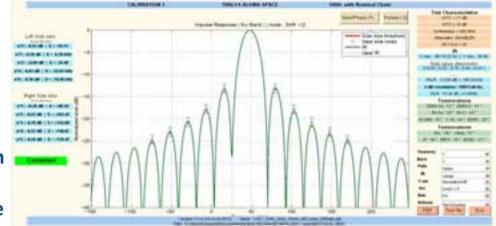
Cycle 3: from April, 16th, 2016

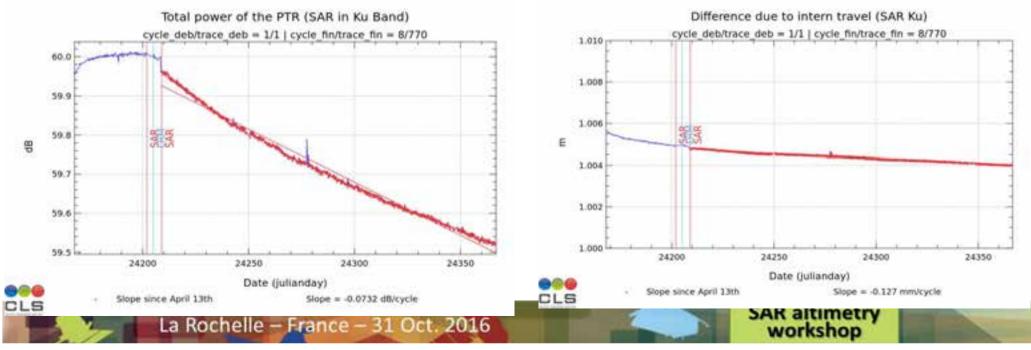
Nominal scenario: 100% SAR Mode coverage

- SAR Open-Loop over ocean, coastal areas,


Antarctica and Arctic margins, inland waters over steep regions

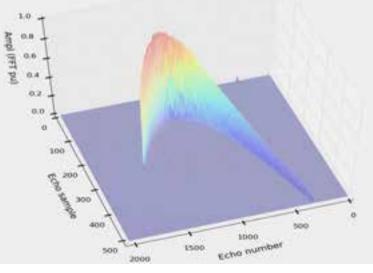
- SAR Closed-Loop elsewhere


SAR Open Loop: SAR Closed Loop: LRM Mode Sea loe, Open Ocean, Land with OLTC content, loe Sheet Margins Land without OLTC content, loe Sheet Interiors

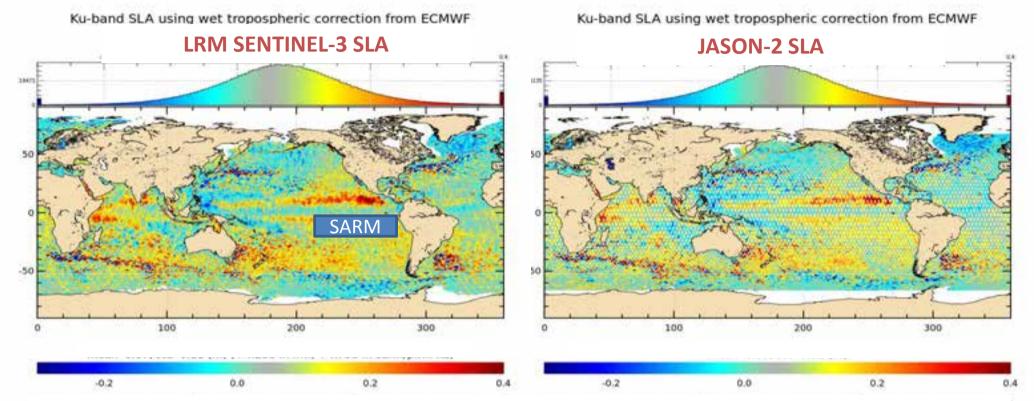

SAR altimetry

SRAL Monitoring

- All T°, V, power consumption are nominal
- LRM & SARM SNR in line with requirements.
- Tracking Commands (gain and range) behave as expected
- Nominal CAL1 SAR Ku (and C)
 - Very stable Internal Path Delay, phase and gain variation
 - PTR Total Power decreases with a 0,06dB/cycle slope
- Nominal CAL2


Transponder Calibration

- Ku-Band Transponder developed by the TUC (Technological University of Crete) and GeoMatLab.
- Installed in Crete on a S3A, S3B, Jason-2/3 crossover points.
- First overflights give promising results:
 - Clean echoes during acquisitions
 - Good bias stability over the 7 passes
 - SRAL Range bias
 - -10,5cm in SARM (minus means too long)
 - -12,3cm in PLRM
 - Absolute bias not in line with in-situ CALVAL results (refer P. Bonnefond SAW presentation) To be investigate

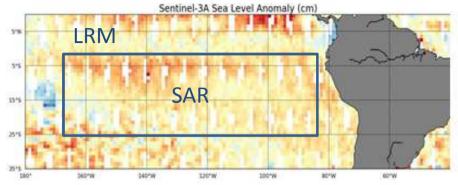


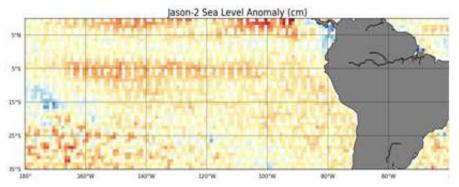
SRAL echoes over the transponder

SAR altimetry workshop

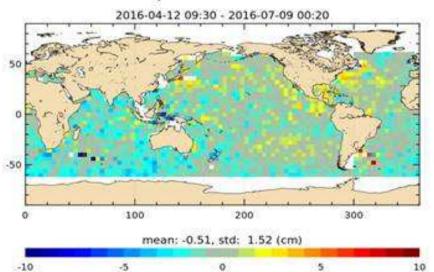
LRM Performances over ocean

Excellent agreement between Sentinel-3a and Jason-2 Sea Level Anomaly and SWH (not shown)


SAR altimetry


workshop

Same level of performances than J2/J3 (@SWH=2m) Range @1Hz = 1,45 cm RMS SWH @1Hz = 11 cm RMS


La Rochelle – France – 31 Oct. 2016

LRM to SARM continuity

& PLRM Validation

- Seamless transition between SARM and LRM over the pacific box
- PLRM fully validated using several diagnoses (PLRM/LRM continuity , mono&multi-mission Xover)

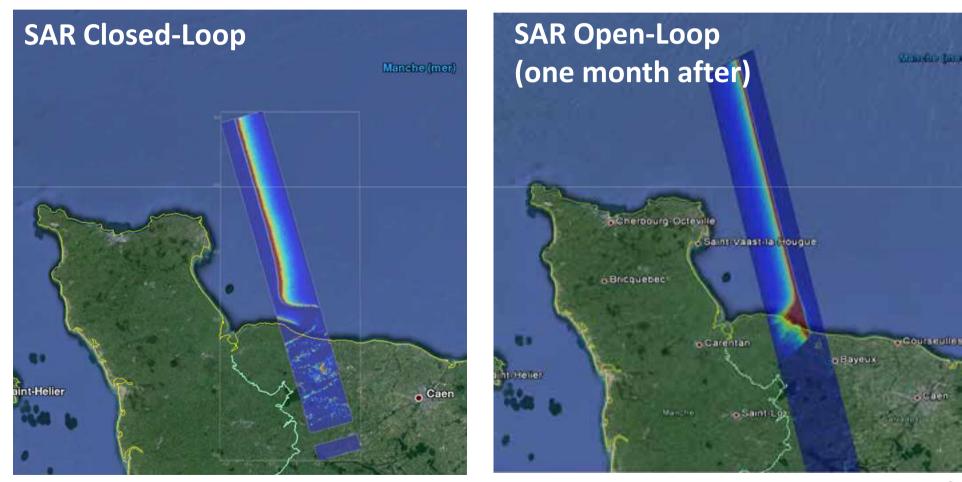
Reference to calibrate and validate SARM

mean: -0.51, std: 1.52 (cm)							
-10	-5		0	5	1		
Nor- Mous	2023 -0.51464803	Bal Dev Medica	£.822384989 -4.44903229	Min.i Max	43.883333 69.85475		

SARM Performances over ocean

Ku-band SLA using wet tropospheric correction from ECMWF

Ku-band SLA using radiometer

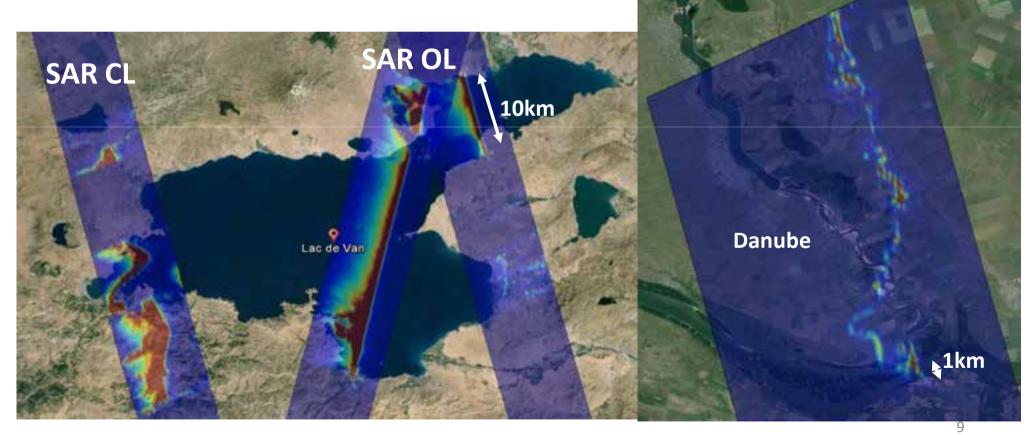


Sentinel-3a Delay Doppler Processing: Assessment over the Global Ocean. (M.Raynal, SAR Workshop) Results over ocean of the SAR Mode processing in Sentinel-3A Products (<u>S. Labroue, SAR Workshop</u>)

SAR Sensitivity to swell conditions have been identified and a first assessment is provided:
 Does Swell Impacts Wave Height Measurements from SAR altimetry (<u>S. Abdalla,</u> SAR Workshop)
 Effects of swell on the altimeter-derived estimates: analyzing real and simulated data (<u>T. Moreau</u>, OSTST/Error Session/Thursday morning)

Acquisition approaching the coast

SRAL Altimeter, using **SAR Mode** driven with the **Open-loop tracking mode** provides measurements **closer to the coast**


La Rochelle – France – 31 Oct. 2016

SAR altimetry

workshop

Acquisitions over in-land waters

- SAR Open-Loop over rivers and lakes gives better measurements (where SAR CL sometimes failed or is disturbed by surrounding relief)
- Requires an accurate a-priori elevation information to build the on-board DEM (Hydroweb, GLWD database, ...)

Acquisitions over Land Ice

120

100

80

60

20

-76.6

0.1

waveform sample

-75.8

6

- First results confirm observations from CryoSat-2
- SAR mode strongly improve the quality and the 100 resolution of ice elevation computation.

SAR-mode altimetry performance over the Antarctic ice sheet (J. Aublanc)

• OLTC commands not accurate enough over the margins. Switch back to closed-loop commanding over land ice in the coming weeks.

-- **LRM**

-- **SAR**

-76.0

Zone de dunes 2 - t458 - 53-53PP - ice1

-76.2

Latitude (deg)

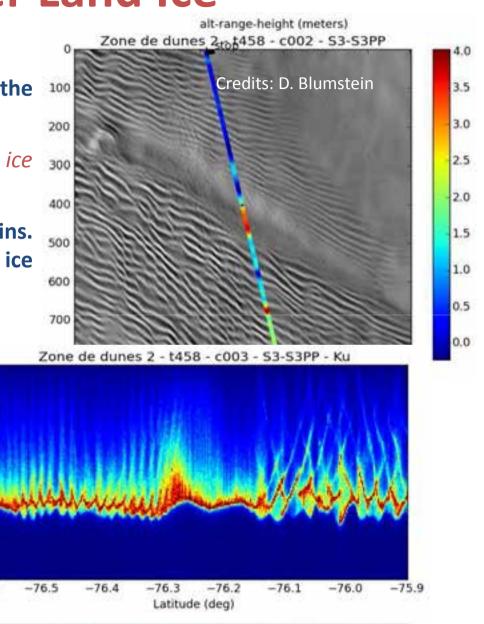
3100

3090

3080

3070

3060


3050

3040

-76.6

-76.4

ilt-range (m)

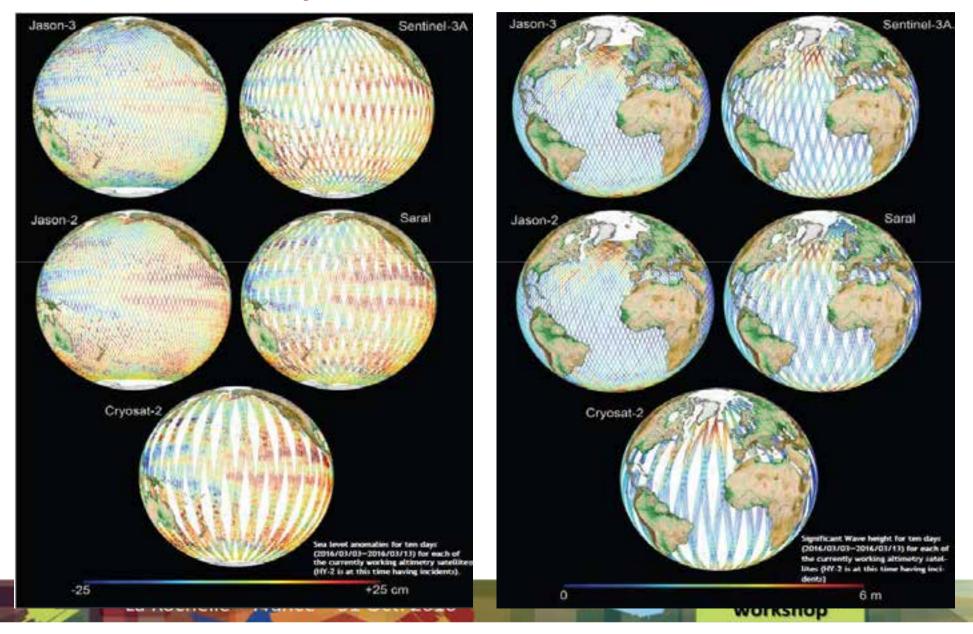
0.9

Conclusion

Sentinel-3 SRAL altimeter is operating nominally 100% in SAR Mode

Very high quality measurements are already provided over ocean:

- LRM performances over ocean are comparable to Jason-2&3
- SARM performances are in line with expectations and with Cryosat-2 experience:
 - Lower noise in SLA and SWH
 - Clean SLA and SWH Spectra (no hump)


Over all surfaces, SARM will open new perspectives, providing high resolution data.

A lot of results from the Sentinel-3 mission already presented today by the user experts at the SAR Altimetry Workshop

Altimetry Satellites Constellation

