NOAA Operational Oceanic Heat Content Product Suite Eileen Maturi¹, David Donahue¹, Nick Shay², Jodi Brewster², Claire McCaskill², Jerry Guo³, Abraham Yuk⁴ 1: NOAA/NESDIS, College Park, MD, 2: RSMAS - University of Miami, Miami, FL, 3: 2020, College Park, MD, 4: SGT inc., College Park, MD

In September 2012, the National Oceanic and Information Service (NESDIS) began providing operational Environmental Satellite Data and Information Service (NESDIS) began providing operational Environmental Satellite Data and Information Service (NESDIS) began providing operational ocean heat content (OHC) measurements. 26°C isotherm. It is computed from the altimeter-derived isotherm depths in the upper ocean relative to 20°C based on a hurricane season climatology and a two layer ocean relative to 20°C based on a hurricane season climatology and a two layer ocean model. In the present model. In the present model isotherm depths in the upper ocean relative to 20°C based on a hurricane season climatology and a two layer ocean model. combined with altimeter-estimates of the 20°C and 26°C isotherm depths, and the depth of the 26°C isotherm depth and the ocean mixed layer depth are inferred. By integrating the 26°C isotherm depth to the surface (where SST is the surface boundary condition) an ocean heat content is calculated (i.e., area under the curve) as shown in Figure 1. The algorithm that generates the OHC product ran in development mode for more than 10 years at the NHC and University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS). The algorithm uses a reduced gravity model to estimate the 20°C isotherm depth based on objectively analyzed sea surface height anomaly fields (SSHA) from available altimeter missions, currently Jason-2 and Saral, and the NESDIS GEO-POLAR Blended SST Analysis. The approach is evaluated with in situ ocean sensors such as ARGO floats, XBT transects, mooring data etc. (Figure 2). The software allows for additional satellite data such as ARGO floats, XBT transects, mooring data etc. (Figure 3). Currently, NOAA's Office of Satellite Data Processing and Distribution (OSPO) generates operational daily fields that include input Sea Surface Height Anomaly, Geo-Polar Blended SST, 20° isotherm depth (H₂₀), 26° isotherm dept Atlantic and North Pacific Basins (#s1, 2, and 3 in Figure 5 shows the influence OHC had on the development and intensification of Super Typhoon (ST) Haiyan in 2013.

World

Ocean

Atlas

Digital

Model

Saral

Figure 1: Schematic of OHC calculation. The red shading in the blow-up shows the true OHC by integrating the black temperature profile. The dashed blue approximated the shows temperature profile of the upper ocean.

Figure 2: Three-year averaged XBT transect and SPORTS data averaged (08-10) for the month of Sept. Upper panel shows average OHC calculated from SPORTS (black line) with $\pm 2\sigma$ and from the XBTs (red). Lower panel shows averaged temperature profiles from the XBT transect with the 26°(20°) C isotherms in black (white). The XBT transect path is shown in the inset in the lower left corner.

Figure 4: The seven tropical cyclone "basins" where storms occur on a

Figure 5: OHC prior to development of Super Typhoon (ST) Haiyan utilizing both Jason-2 and SARAL data. The green dot represents a TAO mooring that was directly hit by Haiyan. The inset shows the temperature time series (lower panel) and the estimated OHC from SORTS and the TAO mooring data (upper panel) and the black line is the time of the closet approach of the ST.

Maturi, E., et al 2014: GHRSST Sea Surface Temperature Products. 2014 GHRSST Science Team Meeting, 2-6 June, Capetown, South Africa Jaimes, B., L. K. Shay and E. W. Uhlhorn, 2014: Observed enthalpy fluxes during the rapid intensity change of hurricane Earl. Mon. Wea. Rev (In Press) McCaskill, E. C., and L. K. Shay 2014: The systematically merged Pacific Ocean regional temperature and salinity (SPORTS) climatology for typhoon intensity forecasts. 31th AMS Hurricane and Tropical Meteorology Conference, 31 Mar-4 April, San Diego, CA, https://ams.confex.com/ams/31Hurr/webprogram/Paper244756.html (6pp. Extended Abstract). Meyers, P. C., L. K. Shay, and J. K. Brewster, 2014: The development of the systematically merged Atlantic regional temperature and salinity climatology for hurricane intensity forecasting. J. Atmos. Oceanogr. Tech., 31, 131-149. Shay, L. K., and J. Brewster. 2010: Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Wea. Rev., 138, 2110-2131. Shay, L. K., J. Brewster and E. Maturi, 2013: Algorithm Theoretical Basis Document: Satellite-derived Oceanic Heat Content Products and Review Board, NOAA National Environmental Satellite Data Information Service, World Weather Research Center, College Park, MD (42pp).

0 - 50 - 30 - 10 10 30 50

100°W

50°N

40°N

30°N

20°N

10°N

100°E

2014 Ocean Surface Topography Meeting 30 October 2014

