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Abstract Simulated Lagrangian particle dispersion at POLYMODE (1977-78) :“ : Example of drifter density distribution
, , o o . , , One of most common approaches of deriving mixing coefficient from o iabien of drimpeed irbre R~ - - with contour enclosing 50% of drifter
One of classical methods, used to estimate mixing coefficient, utilizes the rate of dispersion of : : : : : _ o2 locati
, o , : , , trajectories of Lagrangian drifters is based on Taylor (1921): Ky 107 " 000 o " ocations
particles from a source or from initial locations. This method is based on the assumption that on . di im e
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addition, calculations are performed in a coordinate system, moving with the mean flow, so that, where d’j is particle displacement due to velocity anomaly. E (- = H‘ e
when the flow is strong, it may be difficult to translate Lagrangian information in to Eulerian grid _ P . . g - ™ | . SEaN A S —t
needed for practical applications. In many cases, by the time when — < d’;d’; >— const , d; is already g o - et = ) oh oF o PP S
Such method implies the existence of sufficient spectral gap between scales of resolved (large- large. So that the method is essentially non-local and may not resolve . X ] R E'-f
scale, time-averaged or slowly changing) currents and anomalies (traditionally referred as internal scales of the mixing. . ems. V', emfs & STy
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“eddies”). At the same time, recent studies reveal a tremendously complex structure of the mean o - .. A 50% contours for different ;e —h
ocean circulation, in which fronts remain sharp and narrow even on long-time averages and long- . strengths of mean and ‘ y —— | I —
living, coherent mesoscale eddies are often organized along preferred paths, producing a weak but AI’IE|"||"SiS of trajecmriea of drifting hL.lD".n"S, dmgued at 15m, chowed erometer ranaed used to computestatistics variability of the current o
persistent “texture” of the mean ocean circulation. that mean flow significantly suppresses upstream excursions of the |<V>], emi
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Our study proposes a new technique, allowing to increase spatial resolution of the mixing , ) E f? PP , P o i
coefficient estimates, by converting Lagrangian trajectories into Eulerian probability density drifters. This dominance of advection over mixing leads to a new
function near the source. The method is based on the analytical solution of the diffusion equation method for the quantification of the mixing
for a tracer released from a singular source in the presence of a mean flow and generalized for De pEﬂdEHEE Dfmi:-:ing onmeancurrent and eddies EtI"EI"IEthE
two-dimensional case and for particles with a finite life span. The method characterizes excursions
: : : . .. Overlald fragments of drogued drifter trajectories sorted according to their start points .
of the particles against the mean flow and uses them to estimate mixing. For the same mixing e . E-folding rate o of Clx)/C{-x) I s
within 20-degree longitude bands Scale of upstream diffusion: 1/|a|
coefficient, the stronger the flow the weaker are the excursions. We show that in most areas of the . ' : e - i it i
real ocean excursions of satellite-tracked drifting buoys against the mean flow are relatively small e e w - _ -
that justifies our method. Results of the analysis of drifting buoys and simulated particle o0l e : ; .
trajectories, derived from satellite data of altimetry and scatterometry and consistent with the - 25 70 B : .
actual drifter “spaghettis” (work in progress), are used to study the factors controlling the intensity m | _ &
of the multi-scale horizontal mixing near the ocean surface. Bl i" | ™
* Eddy fluxes are significant but very hard to quantify within a simple advection/diffusion . : g
framework: . .
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* Climate models do not resolve eddies and, therefore require their parameterization. . . _ — )
computed directly Log_ 10 of diffusion coefficient K= |<V>|/|a| (cm?/s)
* Eddy parameterization is difficult because: . e s e i P o o e
- eddy time and space scales are not too different from the scales of the “mean” flow; . ' = n -
- eddy dynamics are complex; B h -
- eddy-mean interaction is strong; . " . . i
- etc. Interpretation of Eulerian tracer concentration as a -, " B
Exact analytical solution for one-dimensional tracer probability density of locations of Lagrangian particles ¥ i
advection/mixing equation from a singular sourcein a steady ' - . '
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Same density distrbution, 2D case with a constantdeathrate — 1
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Eddy distributions are highly heterogeneous and very long. Byintroducing  C(x) = [ c(x,y) - dy
Preferred eddy paths are common yo o
Example of drifter density distribution P
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Examples of statistics
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5 Summary
L s . \é{‘\; T
g = | N * Mean flow limits upstream diffusion of passive tracer and upstream-downstream differences can be used to estimate mixing coefficients on
A N N | T smaller scales.
4 SSA * Trajectories of Lagrangian drifters were used to estimate upstream excursions and diffusion coefficient.
| » Diffusion coefficient is found depending both on EKE and on the magnitude of the mean flow (although the latter two are not strictly
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» Simple diffusion parameterization is introduced.
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