

Particle diffusion against mean flow as a new framework for local estimate of mixing coefficient

Nikolai Maximenko¹, Jan Hafner¹, Oleg Melnichenko¹, and Ali Belmadani²

-1000 -800 -600 -400 -200 0 200 400 600 800 1000 Upstream displacement, km

- Mean flow limits upstream diffusion of passive tracer and upstream-downstream differences can be used to estimate mixing coefficients on smaller scales.
- Trajectories of Lagrangian drifters were used to estimate upstream excursions and diffusion coefficient. • Diffusion coefficient is found depending both on EKE and on the magnitude of the mean flow (although the latter two are not strictly
- correlated).
- Simple diffusion parameterization is introduced.

Examples of statistics

1		

Example of drifter density distribution with contour enclosing 50% of drifter locations

Ś	25 75 125 175 225 375 325 475 425 475	+++++++++++++++++++++++++++++++++++++++								
		2.5	7.5	12.5	17.5	22.5	27.5	32.5	87.5	
				<	 <i>V</i> > ,	cm/s				