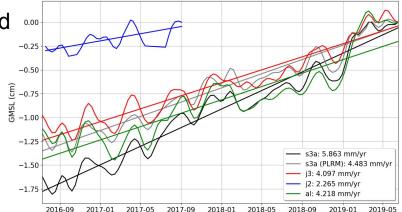


What sea-level drifts can be detected at global and regional scales by comparing recent altimetry missions together: S3A, Jason-3 and Saral-Altika?

OSTST October 19-23, 2020 | Virtual Meeting

R.Jugier, R.Fraudeau, M.Ablain (MAGELLIUM) M.Raynal, A.Guerou (CLS) P. Femenias (ESA/ESRIN)

mage


artal group

Overview

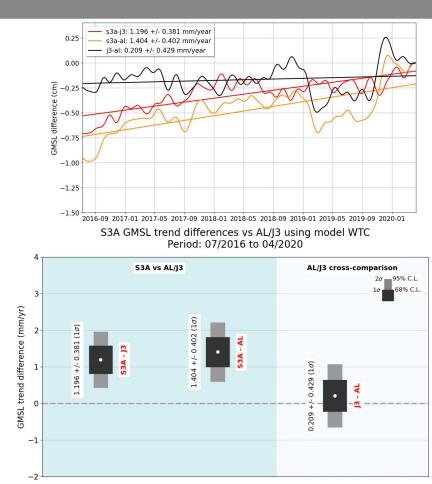
- GMSL evolution is well monitored with a good description of its error and uncertainties (Ablain et al., 2019)
- However the description of potential GMSL drift on recent altimeter missions is quite challenging over short period (3-5 years).

Objectif of this study is:

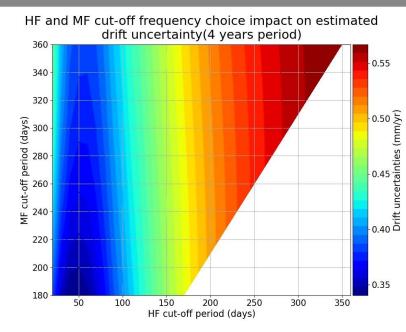
- To provide the global and regional MSL drift detection capability comparing recent altimeters missions (S3A, Jason-3 and Saral/Altika) and analysing the sensitivity of the method :
 - A focus on the detection of S3-A global and regional MSL drift using SAR-mode data is provided

- Method based on (Ablain et al., 2019)
 - \circ The estimator of eta with the OLS approach is noted $\hat{eta} \sim (X^t X)^{-1} X^t y$
 - with the following distribution taking into account the error variance-covariance matrix :

 $\hat{eta}=N(eta,(X^tX)^{-1}(X^t\Sigma X)(X^tX)^{-1})$


- Σ derived from the error budget description
- HF and MF error variance are computed directly from the GMSL difference signal :
 - GMSL computed with AVISO method from Marine L2P products
 - Comparison of GMSL time series after interpolation on the same time sample (usually using the Topex-Jason mission cycles as reference periods)

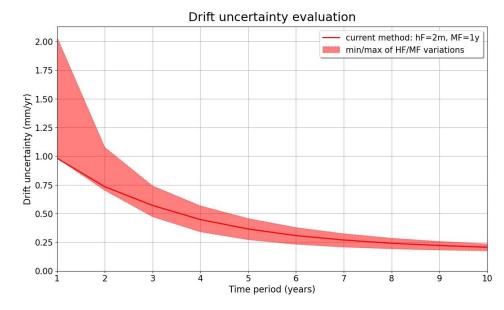
Source of errors	Error category	Jason-2/3 GMSL uncertainty level (1 <i>o</i>)		GMSL differences Uncertainty level (at 1 σ)
High frequency errors: altimeter noise, geophysical corrections, orbits	Correlated errors $(\lambda = 2)$ months)	σ = 1.2 mm		σ between 0.6 and 0.8 mr (depending on altimetermissions)
Medium frequency errors: geophysical corrections, orbits	Correlated errors (λ = 1 year)	σ = 1 mm		σ between 0.5 and 0.7 mm (depending on altimeter missions)
Low frequency errors: wet tropospheric correction (WTC)	Correlated errors $(\lambda = 5)$ years)	σ = 1.1 mm (\Leftrightarrow to 0.2 mm/yr for 5 years)	-	σ = 0 (model WTC error ar cancelled between missions)
Low frequency errors: orbits (Gravity fields)	Correlated errors $(\lambda = 10$ years)	σ = 0.5 mm (\Leftrightarrow to 0.05 mm/yr for 10 years)		σ = 0.5 mm * sqrt(2)
Long-term drift errors: orbit (ITRF) and GIA	Drift error	δ = 0.12 mm/yr		δ = 0.1 * sqrt(2) (GIA error is remove between 2 missions)


From Ablain et al. 2019

er

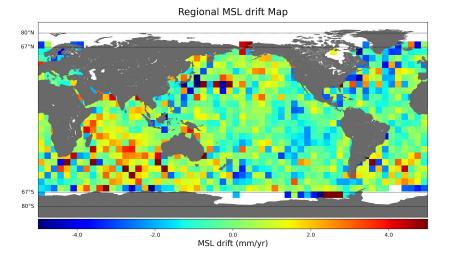
- Drifts and uncertainties on S3A compared to J3 and AL (period 07/2016 to 04/2020) :
 - No significative J3 vs AL drift makes for a strong basis for comparison with S3A
 - S3 vs J3 and AL both find approx
 1.3 +/- 0.4 mm/yr drift (68% C.L.)
- Data updated from *Ablain, OSTST, Chicago, Oct.* 2019 :
 - \circ + 1 year period
 - reprocessing with more homogeneous data
- The origin of this drift has been explained by altimetry experts (see J.Aublanc, OSTST 2020)

- The sensibility of error budget has been studied for high frequency errors
- •
- Uncertainties are computed for different HF and MF cut-off frequencies :
 - Low impact from the variation of the MF frequency.
 - Variations of the HF period has a high impact on the computed uncertainties for short time periods : up to 25%.
 - The currently chosen periods HF = 2 months and MF = 1 year correspond to a minimum in estimated uncertainties.



Uncertainties computed for a time period of 4 years, for different HF and MF cut-off frequencies.

HF variance is computed as the variance of the residue from a low-pass Lanczos filter at the HF frequency. MF variance is computed as the variance of the difference of the residue from a low-pass Lanczos filter at the MF freq. and the signal filtered at the HF freq.

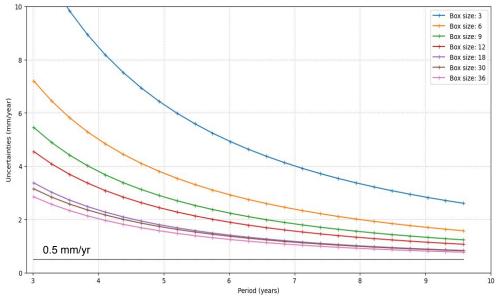


- Uncertainties evaluated for :
 - current method with frequencies HF=2m and MF=1y
 - all combinations of frequencies HF in [2m, 1y] and MF in [6m, 1y]
- For time periods < 3y :
 - current method (HF=2m, MF=1y) is the least conservative i.e. yields lower uncertainties than other combinations
- At 3y, drift unc. between [0.5, 0.75] mm/yr
- At 5y, drift unc. between [0.25, 0.4] mm/yr
- At 10y, drift unc. < 0.25 mm/yr
- A more robust approach must be devised for short time periods

Min/max of uncertainties computed for all HF variations between 2 months and 1 year and all MF variations between 6 months and 1 year, for different time periods.

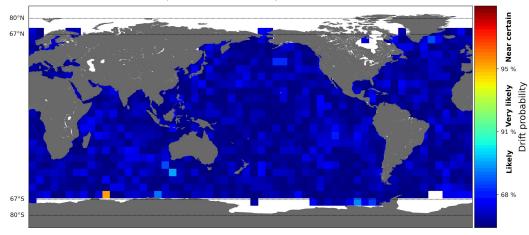
- Regional MSL drift and associated uncertainties have been analyzed at regional scales
- From experience, regional drifts in altimetry are very difficult to detect by such a direct approach because of the ocean variability that is not observed in the same way
- Such an approach is especially effective between the tandem phase
- However, our intention is to quantify precisely the level of uncertainty reached as a function of the period duration and also of the size of the regional area analysed by the direct method.

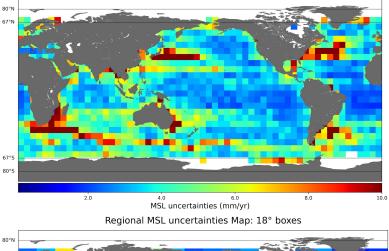
Regional MSL trend differences between S3A and J3: are there significant ?

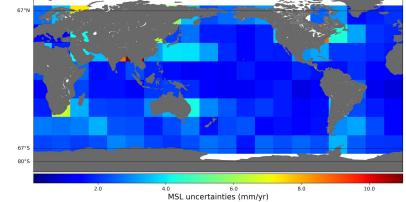


- Same method than the one used at global scale, based on (*Ablain et al., 2019*)
- HF and MF errors computed directly from regional MSL signals
- Low frequency (WTC) and long-term drift errors (orbit, GIA) values taken from *Prandi et al.* 2020

Source of errors	Error category	Jason-2/3 GMSL uncertainty level (1 <i>o</i>)		GMSL differences Uncertainty level (at 1 σ)
High frequency errors: altimeter noise, geophysical corrections, orbits	Correlated errors $(\lambda = 2$ months)	location dependent		location dependent
Medium frequency errors: geophysical corrections, orbits	Correlated errors (λ = 1 year)	location dependent	_	location dependent
Low frequency errors: wet tropospheric correction (WTC)	Correlated errors (λ = 5 years)	location dependent	_	σ = 0 (model WTC error are cancelled between 2 missions)
Long-term drift errors: orbit	Drift error	δ = 0.33 mm/yr		δ = 0.33 * sqrt(2) mm/yr
GIA	Drift error	location dependent		δ = 0 mm/yr (GIA error is removed between 2 missions)


- Uncertainties evaluated for different box sizes and different time periods
- HF and MF variance is computed from S3/J3 but results for other missions are very similar
- Regional drifts under 2 mm/yr can be detected for time periods of over :
 - 4.5 years for box sizes >= 18°
 - 6 years for box sizes >= 12°
 - 8 years for box sizes >= 6°
- Regional drifts under 1 mm/yr can be detected for time periods of over 8 years for box sizes >= 18°
- The C3S requirement of detecting 0.5 mm/yr drifts at regional scale is not achievable using this method over a mission's life cycle.


Evolution of uncertainties depending on the mission period for different box sizes (from 3°x3° to 36°x36°).


- Regional MSL drift and uncertainties, and drift probability are evaluated on S3A/J3, for box sizes of 6°, represented as deviation from the mean GMSL S3A/J3 drift.
- Zones with high computed drifts also have high drift uncertainties : simply a reflexion of high ocean variability in those zones.
- Method accuracy insufficient to detect regional drifts on S3A/J3.

Drift probabilities on s3a/j3 with 6° boxes

Regional MSL uncertainties Map: 6° boxes

Conclusion

- → The GMSL comparison between recent altimeter missions highlights a significant S3A GMSL (based on SAR mode) drift from 07/2016 to 04/2020 compared to SARAL/Altika and Jason-3:
 - +1.3 mm/yr with an uncertainty of 0.4 mm/yr (68% confidence level)
 - no significant drift detected between Jason-3 and SARAL/Altika
 - Cross-comparisons with S3B GMSL have also been performed but results must be consolidated.
- → Our uncertainty estimation is sensitive to the error budget allocated especially at high frequencies and for short period lower than 3 years:
 - An improved and more robust approach is contemplated in order to better estimate uncertainties over short periods of time and thus help detect drifts quicker.
- → Regional scales :
 - Regional drifts <= 1 mm/yr can be detected for time periods of over 8 years at 2000 km spatial scale
 - Detection of drift lower than 0.5 mm/yr as expressed by C3S requirements is impossible at regional scale : new calibration method must be foreseen to be able to verify this level of requirement (see

Ablain presentation, error session or https://www.essoar.org/doi/10.1002/essoar.10502856.1