Toward a method to estimate geostrophic transport from along-track coastal altimetry on shelf and shelf-break regions

Matthieu Le Hénaff^{1,2}

Marion Kersale^{1,2}, Christopher S. Meinen² Renellys C. Perez²

> (1) UM-CIMAS, Miami, FL (2) NOAA-AOML, Miami, FL

Collaborators: Daniel Valla (Univ. Buenos Aires, UMI/IFAECI, CONICET, Argentina) and Edmo Campos (Univ. São Paulo, Brazil)

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE &

OSPHERIC SCIENCE

J

Motivation

• The Atlantic Meridional Overturning Circulation (MOC) is a crucial component of the climate system

• North Atlantic: region of deep water formation

• South Atlantic: nexus for water masses formed remotely: Indian and Pacific Oceans, Antarctic bottom waters, North Atlantic Deepwater

• The South Atlantic is the only basin where heat is transported equatorward (and not poleward)

Schematic of the main MOC in the Atlantic (Perez et al., 2015). Blue arrows: cold, dense water in the lower limb of the MOC cell. Red arrows: warm, light waters in the upper limb of the cell.

- North Atlantic (26.5 deg.N): RAPID-MOCHA array since 2004
- South Atlantic MOC Basin-wide Array (SAMBA, 34.5 deg.S) since 2009

Motivation

Location of moorings of the 34.5 deg.S SAMBA array, with U.S., Brazilian, French, and South African moorings.

SAMBA array mostly composed of Pressure-equipped Inverted Echo
 Sounders **PIES** moored instruments: acoustic measurements (travel time) +
 look up tables from *in situ* data: => vertical thermohaline structure

- Between 2 moorings: integrated geostrophic current anomaly
- Dense array at both western and eastern boundaries
- Total MOC transport: 17.3±5 Sv (Kersalé et al., 2020)

Ref: Kersale, M., Meinen, C.S., Perez, R.C., Le Henaff, M., Valla, D., Lamont, T., Sato, O.T., Dong, S., Terre, T., van Caspel, M. and Chidichimo, M.P. (2020). Highly variable upper and abyssal overturning cells in the South Atlantic. Science advances, 6(32), p.eaba7573.

Motivation

Surface velocities (blue arrows) from shipboard-ADCP in 2009. Locations of the PIES/CPIES instruments (yellow + magenta)

- Limitations of the SAMBA array:
 - Most inshore moorings at ~1300 m depth
 - No continuous measurements inshore
- Currently, **transport inshore** of the moorings estimated using **model simulations**
- Inshore transport: ~3 to 4 Sv, i.e. ~20% of the total MOC estimated without direct observations
- We proposed to use **coastal altimetry** to **fill the gap** between the most inshore moorings and the coasts:

Project "Combining coastal altimetry and in situ observations to improve Meridional Overturning Circulation estimates in the South Atlantic", supported by NASA Physical Oceanography Program

Methodology and data

Jason tracks (magenta), with, in red, tracks used in our project. In yellow and cyan: PIES and CPIES, in green: tall moorings

- We are using the **reference TOPEX/Poseidon-Jason** series **tracks**:
 - Track #254 in the West along South America
 - Track #209 in the East along South Africa
- Focus on **Jason-2** data first (2008-2016, longest overlap with SAMBA array), to be extended to T/P, Jason-1 and Jason-3
- Along-track Sea Level Anomaly, then Geostrophic Current Anomaly
- Project the Geostrophic Current Anomaly on the vertical => Geostrophic
 Transport Anomaly

Methodology and data

How can we estimate the geostrophic transport from altimetry?

- Needs to estimate the vertical structure of the flow (barotropic and baroclinic components)
- Use available in situ data to estimate these components
- Data available:

Western side of the 34.5°S array	Eastern side	
10 PIES (SAMBA)	8 PIES (SAMBA)	
1 bottom pressure recorder	4 tall-moorings	
1 bottom mounted ADCP	2 bottom mounted ADCP on the shelf	
Lowered ADCP sections	Ship-board ADCP sections	
CTD sections	CTD sections	

• Focus on western (South American) side of the SAMBA array

Analysis

• 2 PIES moorings closest to shore: bottom pressure and density profile

- $\eta'_{bt} = \frac{p'}{\rho_b g}$: **barotropic component** of the sea level (ρ_b : bottom dens.)
- $\eta'_{bc} = \frac{\Phi}{g}$: baroclinic component (Φ : geopotential height anomaly)

•
$$\eta'_{pies} = \eta'_{bt} + \eta'_{bc}$$

• Variance statistics (2009- 2018):	Mooring	η'_{bc} variance (cm ²)	η'_{bt} variance (cm ²)	Total (cm ²)
	A (~1300 m)	62 (89%)	8 (11%)	70 (100%)
	B (~3600 m)	235 (96%)	10 (4%)	252 (100%)

Sea level dominated by baroclinic variability

• On the lower part of the shelf break, we will need a **vertical regression to project surface altimetry data** from the surface downward

Analysis

 Upper on shelf break (~400 m): bottommounted Acoustic Doppler Current Profiler (ADCP), during Dec. 2013 – Nov. 2015
 ⇒ Currents

- Same approach as Lago et al. (2019):
 - Barotropic: vertical average
 - Baroclinic: Total minus Barotropic
 - EOF analysis of velocity

Current dominated by barotropic component

- Baroclinic component not negligible
- Need to estimate if assuming the current as purely barotropic is valid, or if a regression is necessary

Ref: Lago, Saraceno, Martos, Guerrero, Piola, Paniagua, Ferrari, Artana, Provost (2019). On the wind contribution to the variability of ocean currents over wide continental shelves: a case study on the northern Argentine continental shelf. *J. Geophys. Res.*, 124(11), pp.7457-7472.

Vertical section of current perpendicular to ship track, between the coast and 1st mooring of SAMBA array, between July 2011 and Oct. 2018 (SAM project, courtesy of D. Valla).

• Large variability, but current on shelf appear generally barotropic (consistent with Lago et al., 2019, further south)

Conclusion – future work

- Work in progress
- Lower shelf break (inshore SAMBA moorings):
 - Baroclinic variability dominates
 - We will use linear regression of altimetry data to estimate transport on the vertical
- Upper shelf break (~400 m) and on the shelf:
 - Barotropic current dominates
 - We will integrate altimetry-derived surface geostrophic current on the vertical to estimate transport
- We will use in situ data to validate the approach