CONTRIBUTIONS TO THE IMPROVEMENT OF THE WET TROPOSPHERIC CORRECTION FOR SARAL/ALTIKA

ISep

Clara Lázaro^(1,2), M. Joana Fernandes^(1,2), Alexandra L. Nunes^(2,3), Nelson Pires^(1,2)

⁽¹⁾ Universidade do Porto (UPorto), Faculdade de Ciências, Porto, Portugal (email: clazaro@fc.up.pt)

⁽²⁾ Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Porto, Portugal

⁽³⁾ Instituto Politécnico do Porto, ISEP, Porto, Portugal

1. Aims of the study

Contribute to the assessment of the SARAL/AltiKa (SA) MWR-derived Wet Tropospheric Correction (WTC) and propose alternative corrections.

2. UPorto algorithms developed for the computation of alternative WTC

2.1 SARAL/AltiKa MWR data

Latest solution available on RADS (Radar Altimeter Database System).
Cycles 1 to 8, study period: 2013.

2.2 DComb (Data Combination) WTC [1]

- Combination, through Objective Analysis (OA), of wet path delays derived from:
- SI-MWR (Scanning Imaging MWR) on-board RS missions, previously calibrated with respect to AMR (Jason-2);
- GNSS data from coastal inland and island stations, reduced to sea level.
- In the absence of observations, ECMWF Operational model is used.
- Designed to compute a WTC for missions without an on-board MWR: substitutes the MWR-based correction.
- Continuous correction.
- Advantage: independent from the on-board MWR-based WTC, enables an independent evaluation of this correction.

2.3 GPD (GNSS-derived Path Delay) WTC [2]

- Estimates are calculated by OA from three different wet path delays:
- GNSS-derived;
- ERA Interim model;
- valid MWR measurements.
- Primarily designed to compute an improved WTC on coastal areas.
- Based on the original MWR correction, estimates are calculated for invalid MWR measurements only, valid MWR measurements are kept unchanged.
- Continuous correction.

2.4 Examples of DComb and GPD corrections

3. Assessment of the SA MWR-derived WTC:

ERA

Coasta

Fig. 1: Comparison of the DComb, MWR-based and ECMWF Operational model WTC; the DComb correction is calculated whenever observations (SI-MWR and/or GNSS) are available; otherwise, the DComb correction assumes the ECMWF WTC value + 5 mm). Examples are shown for SA Cycle 1, pass 15 (left) and pass 58 (right).

Fig. 2: Comparison of the GPD, MWR-based and ERA Interim WTC; the GPD correction is calculated whenever the MWR-based WTC is flagged as invalid (due to land, ice or rain contamination or instrument malfunction, see colour bars); otherwise, the GPD WTC assumes the values of the on-board MWR WTC. Examples are shown for SA Cycle 1, pass 15 (left) and pass 58 (right). statistical diagnoses

• Difference in weighted variance (WV, weights function of latitude), for each cycle, of along-track Sea Level Anomaly (SLA) values computed using either DComb/GPD correction or MWR-based WTC.

• Difference in WV, for each cycle, of SLA differences at crossovers (XO) (provided that SLA values at XO do not differ more than 10 days, i.e., $\Delta T \le 10$ days), with SLA values calculated using either DComb/GPD or MWR-based WTC.

• SLA variance difference, calculated using either DComb/GPD or MWR-based WTC, function of distance from coast, latitude and longitude.

• Differences in variance, for the whole period, of SLA differences at XO ($\Delta T \le 10$ days), with SLA values calculated using either DComb/GPD or MWR-based WTC, mapped globally on a 4°×4° grid.

4. Results for DComb WTC: comparison with MWR-based WTC

Fig. 4: SLA variance difference (cm^2) , function of distance from coast (using all data points and the selection of

Gridded along-track SLA variance differences: DComb-MWR

Fig. 3: Difference in weighted variance (cm²), for each cycle, of along-track SLA values (orange) and at XO (blue). The represented difference is DComb minus MWR: (top) all estimates are used; (bottom left): only estimates computed from observations (SI-MWR and/or GNSS) are used; (bottom right): only estimates over ocean (distance from coast > 100 km) and not contaminated are used.

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 Longitude (°)

Fig. 6: Map of along-track SLA variance difference (cm²) from collinear analysis. Pixels values are mean values within each $4^{\circ} \times 4^{\circ}$ region; pixels with no data values are represented in white.

Fig. 7: Map of SLA variance differences (cm²) at XO. Pixels with no data values are represented in white.

5. Results for GPD WTC: comparison with MWR-based WTC

6. Summary

• Results confirm that the improvement of the SA MWR WTC retrieval algorithm is still needed, particularly in coastal and polar regions.

• Statistical diagnoses have shown that DComb WTC correction performs better than the current MWR-based correction, this result being more evident in the latter regions; in open ocean regions, differences in along-track SLA values, using either the DComb or MWR, are generally lower than 2 cm².

• GPD WTC, being dependent on the MWR-based WTC, is worse than DComb WTC. Contaminated MWR values are still present (see Fig. 2,

Fig. 8: Difference in weighted variance (cm²), for each cycle, of along-track SLA values (green) and at XO (magenta). The represented difference is GPD minus MWR.

Fig. 9: Difference in variance (cm²) of SLA data sets computed using either GPD or MWR WTC, function of distance from coast (using all data points and the selection of points with $||atitudes| \le 55^{\circ}$).

Difference of variances at XO: GPD-MWR

left plot); GPD algorithm mainly improves the SA WTC in coastal and polar regions.

• Results show that the contamination present in the SA on-board MWR WTC is well depicted in the analyses of SLA variance, while the variance at crossovers does not capture these localised effects.

References

- 1. Fernandes, M.J., A.L. Nunes, C. Lázaro (2013), Analysis and inter-calibration of wet path delay datasets to compute the wet tropospheric correction for CryoSat-2 over ocean. *Remote Sens.*, vol. 5, 4977-5005; doi:10.3390/rs5104977.
- 2. Fernandes M.J., C. Lázaro, A.L. Nunes, N. Pires, L. Bastos, V. B. Mendes (2010), GNSS-derived Path Delay: an approach to compute the wet tropospheric correction for coastal altimetry. *IEEE Geosci. Rem. Sens Lett.*, vol. 7, no. 3, 596–600.

Acknowledgements

This work is funded by FEDER funds (European Union) through the Operational Programme for Competitiveness Factors – COMPETE, and by Portuguese funds through the Fundação para a Ciência e a Tecnologia – FCT, under Project PTDC/MAR/108177/2008. Also, Miguel Salgado thanks FCT for a research grant (PTDC/MAR/108177/2008/BI/2012-05).

Fig. 10: Map of along-track SLA variance difference (cm²) from collinear analysis. Pixels values are mean values within each $4^{\circ} \times 4^{\circ}$ region; pixels with no data values are represented in white.

Fig. 11: Map of SLA variance differences (cm²) at XO. Pixels with no data values are represented in white.

Longitude (°)

-180 -160 -140 -120 -100

Gridded along-track SLA variance differences: GPD-MWR