

New Powerful Numerical Retracker Solution Accounting for Speckle Noise Statistics

J.C.Poisson, F.Piras, P.Thibaut (CLS) : Collecte Localisation Satellite, France S.Le Gac, F.Boy, N.Picot (CNES) : Centre National d'Etudes Spatiales, France

Summary

- For years, CLS has been conducting studies (for CNES, ESA) to improve the retracking function for <u>all altimeter missions</u>, <u>all modes (LRM / PLRM / SAR)</u>, <u>over all surfaces (ocean / hydro / sea ice / ice sheets)</u>
- Our aim was to converge to an homogeneous physical solution applicable to any altimeter mission, any surface (rubbing out discontinuities at transitions) and accounting for instrumental characteristics (LRM & SAR)
- Many configurations have been tested, results have been compared, performances have been largely improved
- This talk presents one of the main outcomes of these studies : a new powerful numerical retracker, already implemented in the Jason-3 Peachi prototype.

Role of the retracker (LRM/SAR)
➔ To derive geophysical parameters from one (or several) waveforms The retracker is based on two main components:
 <u>A model</u>: many solutions accounting or not for real instrumental charact. (Brown, Numerical from simulations (like S3PP), Samosa, Halimi,) <u>An estimation process</u>: many solutions to fit the model with N parameters: epoch, SWH, Power, skewness, Decay,
 (LSE, MLE (Newton Raphson, Levenberg Marquardt), Bayesian, MAP, Kalman, …) Final performances of the retracker closely linked to the consistency between model and estimation strategy
Ocean Surface Topography Science Team Meeting , Nov 2016, La Rochelle, France

The model

For LRM mode and for SAR mode, the echo can be expressed as the convolution (on different geometries) of 3 terms (Brown/Hayne) :

 $S(t) = FFSR(t) \circledast PDF(t) \circledast PTR(t)$ in LRM

 $S(t,f) = FFSR(t,f) \circledast PDF(t) \circledast PTR(t,f)$

in SAR

Saral Antenna Gain Pattern

X (km)

t: time, f: doppler frequency (cf, Boy, 2016, TGRS)

- FSSR (Flat Sea Surface Response)
- PDF(Probability Density Function of the heights)

• PTR (Point Target Response: XT for LRM, XT & AT for SAR)

□ Current solutions in official processing chains (LRM or SAR) approximate the PTR by one gaussian (Jason, Saral, RA-2, CS-2/S3 SAR) : MLE3/4 or SAMOSA (several gaussians for Topex)

□ Already shown in previous meetings, importance to account for :

• the real PTR in a numerical model (in LRM : Thibaut & al, OSTST 2012; in SAR : Boy et al, OSTST 2014).

the antenna gain pattern (in LRM - Saral : Le Gac & al, OSTST 2015)

The estimation method

CENTRE NATIONAL D'ÉTUDES SPAT

The estimation method

I Knowing the Gamma distribution of the speckle, the likelihood criterion can be written as :

$$C = Cste + N \cdot \sum_{t=1}^{K} \frac{y_t}{S_t} - (N-1) \cdot \sum_{t=1}^{K} \ln(y_t) + N \cdot \sum_{t=1}^{K} \ln(S_t)$$

BUT
BUT
Challenor & a
N : number of

Challenor & al , 1990 N : number of individual pulses K : number of range gates

CENTRE NATIONAL D'ÉTURES S

The **Newton Raphson (NR)** or the **Levenberg Marquardt (LM)** algorithms implement a descent gradient method :

$$\nabla C(\theta) = \frac{1}{Pu^2} \sum_{t=1}^{K} \frac{\partial S_t}{\partial \theta} (y_t - S_t)$$

We recall that these two methods are used in all operational ground processing chains:

□ NR : Jason-1/2/3, Saral, CS-2/S3 CNES Processing Prototypes

LM : Envisat/RA-2

Alternative

We propose to use a <u>Numerical Nelder Mead</u> method (also known as Downhill Simplex method) that accounts for the exact Likelihood criterion and thus accounts for the number of individual pulses that are averaged.

Convergence of the retrackers

Numerical Nelder Mead

Convergence of the retrackers

Numerical Nelder Mead

Performances of the retrackers: Impact on Look-Up Tables

□ LUT with current Ku-band retracker (Jason-2/Jason-3/Saral) : MLE4

Hayne model (**Gaussian PTR**) + **Newton Raphson** algorithm (degraded Likelihood Function)

Estimation at 20Hz (40Hz for Saral) corrected at 1Hz with Look Up tables

Jason-3 Range Look Up Table

Jason-3 SWH Look Up Table

Performances of the retrackers: Impact on Look-Up Tables

LUT with Numerical Ku-band retracker (in Peachi Jason-3)

Hayne model + <u>Real PTR</u> + <u>Newton Raphson</u> (degraded Likelihood Function) Estimation at 20Hz (40Hz)

Look Up Tables are reduced but still required (not null)

Jason-3 Range Look Up Table

Performances of the retrackers: Impact on Look-Up Tables

□ LUT with Numerical Nelder Mead Ku-band retracker (in Peachi Jason-3)

Hayne model + <u>**Real PTR**</u> + <u>**Nelder Mead**</u> estimation with full Likelihood Function accounting for the speckle characteristics

Estimation at 20Hz

LUT corrections become negligible

Jason-3 Range Look Up Table

Jason-3 SWH Look Up Table

Why not for SAR retrackers ? - SAR speckle distribution -

The speckle statistic is computed for homogeneous waveforms (same epoch, SWH, sigma0)

One step beyond : not a sign of madness !

Adaptive Retracker - an evolution of the Numerical Nelder Mead retracker

SeeThibaut & al, Eumetsat conf, 2016

$S(t) = FFSR(t) \circledast PDF(t) \circledast PTR(t)$

Introduction of the mean square slope (mss) in the FSSR

(see Jackson 1992; Amarouche 2007; Poisson & Quartly submitted in 2016)

Model **flexible enough**, to fit **ocean echoes as well as peaky echoes** (sea ice and hydro) and still accounting for the instrument (**PTR**, **Antenna beamwidth**, etc ...).

Conclusions (1)

- CLS has conducted many studies (mainly for CNES) to improve the retracking function for all altimeter missions, all modes (LRM/PLRM/SAR), over all surfaces (ocean/hydro/seaice/ice sheets)
- Accounting for the speckle statistics is crucial when retracking

Numerical Nelder Mead solution

- ✓ Provides good estimates at 20Hz
- ✓ Reduces the residuals of the waveform fitting
- Allows removing LUT corrections
- Enhances the performances
 - LRM = -10% noise in range, -60% noise in SWH
 - SAR = -10% noise in range, -25% noise in SWH
- Jason-3 Peachi products include this solution (have a look at them) (have a look at the JPL R.Shah's poster)

Conclusions (2)

- Results have been shown for LRM but method applicable in SAR
- Huge potential for reprocessing all missions (even for Topex with corrupted PTR !)
- Possibility to enhance performances for non-oceanic surfaces and continuity with deep ocean if using an Adaptive Retracker
 - crucial for hydro at estuaries and lakes
 - crucial for sea level in leads, extension of SLA to the north and estimation of sea ice freeboard and thickness (Poisson & al, OSTST 2015, Reston)
- One recommandation :

Adopt the Numerical Nelder Mead solution for Jason-3

Should be considered in the current/future ground processing chains, especially for Sentinel-3A/B/C/D and Sentinel-6

Diapositive 22

p2 Numérique ? pthibaut; 19/09/2016

... Thank you for your attention ...

For observing all surfaces without discontinuities : Adopt the Adaptive !

cnes

CENTRE NATIONAL D'ÉTUDES SPAT

... Back up slides ... Ocean Surface Topography Science Team Meeting , Nov 2016, La Rochelle, France CLS cnes - 24 -CENTRE NATIONAL D'ÉTUDES SPATIALE

Computation of MLE4 LUTs

Noise reduction induced by Numerical and Nelder Mead retracker with respect to MLE4

Jason-3 Range Noise Table

Jason-3 SWH Noise Table

