

First results from the PEACHI Jason-3 prototype

A processing laboratory for innovative altimetry products based on Jason-3 data

Sophie LE GAC, CNES

and the PEACHI-J3 team :

F. Boy N. Picot

M.-L. Fréry B. Picard F. Piras J.-C. Poisson P. Thibaut N. Tran

OSTST – La Rochelle, France – November 1-4, 2016

Overview

- PEACHI = Prototype for Expertise in Altimetry, Coastal, Hydrology and Ice
- Heritage from PEACHI AltiKa prototype [Valladeau et al., OSTST 2014]
- The prototype is seen as a **laboratory for processing Jason-3 data** and **delivering** experimental products with foreseen added-value, such as estimates from the **numerical retracking** [Le Gac et al., OSTST 2015 – Boy et al. OSTST 2014]
- Prime objective of PEACHI Jason-3 is to ensure and demonstrate the quality of new algorithms before deciding their implementation into Jason-3 operational ground segment

- The PEACHI-J3 processing prototype
 Description of the PEACHI-J3 product
 Validation of PEACHI-J3 algorithms
 Conclusion and perspectives

S. Le Gac et al., PEACHI-J3, OSTST 2016

- PEACHI-J3 algorithms outputs are merged with official SGDR file contents
 - » 1 file per pass/cycle : filename = PEACHI_J3_SGDR_Cxxxx_Pxxxx.nc
 - » NetCDF format, CF-1.1 convention
 - » All SGDR fields unchanged
 - » PEACHI-J3 fields clearly identified
- First release (v1.0) : July 2016 Based on S-IGDR data

Some technical issues corrected in the next release

- [Current] Release version 2.0 : November 2016
 - » Example :

\$ ncdump -h PEACHI_J3_SGDR_C0005_P0024.nc

dimonsions		Example of Pass 24 / Cycle 5		
umensions:		\rightarrow 3 324 samples at 1 Hz rate		
	time = 3324 ;	\rightarrow 20 complex in each 20 Hz variable		
	meas_ind = 20 ;	> 104 complex for use of arms		
variables:	<u></u>	→ 104 samples for waveforms		
variables.	double lat 20hz(time	20hz(time, meas, ind) ·		
	lat 20hz·sta	20hz:standard_name = "latitude" ·		
	lat_20hz:un	t_20hz:units = "degrees_north" ·		
	lat 20hz:lor	lat_20hz:long_name = "20 Hz latitude":		
	lat 20hz:co	lat 20hz:comments = "Positive latitude is North latitude, negative latitude is South latitude." ;		
		lat_20hz:_FillValue = 2147483647 ;		
	lat_20hz:sca	t_20hz:scale_factor = 1.e-06 ;		
	lat_20hz:co	lat_20hz:comment = "Positive latitude is North latitude, negative latitude is South latitude. See Jason-3. User Handborg; ; 🚺 🚺 👘		
	()			
	int range_20hz_ku(tir	nge_20hz_ku(time, meas_ind) ;		
	range_20hz	range_20hz_ku:_FillValue = 2147483647 ;		
	range_20hz	range_20hz_ku:long_name = "20 Hz Ku band corrected altimeter range";		
	range_20hz	range_20hz_ku:standard_name = "altimeter_range" ;		
	range_20hz	range_20hz_ku:units = "m";		
	range_20hz	range_20hz_ku:add_offset = 1300000.;		
	range_20hz	range_20hz_ku:scale_factor = 0.0001;		
	range_20hz	range_20hz_ku:coordinates = "lon_20hz lat_20hz" ;		
	range_20nz	range_20hz_ku:comment = "All instrumental corrections included, i.e. distance antenna-COG (cog_corr), USO drift correction (uso_corr),		
	internarpat (modolod_i	internal path correction (internal_path_delay_corr_ku), Doppier correction (doppier_corr_ku), modeled instrumental errors correction (modeled instrumental errors correction)		
		isti_con_range_ku) and system blas ,		
	()			
	double range_zunz_num_neider_mead(time, meas_ind);			
	range_20hz_num_nelder_mead:_FillValue = 9.96920996838687e+36;			
	range_20nz_num_neider_mead:long_name = "corrected altimeter range derived from nume ic i per viead wile4 retracking			
	algorithm.	algorithm. From the PEACHI prototype. ;		
	range 20hz	_num_nelder_mead.units = "m" ·		
II global attri	ihutes.			
		time = "2016-03-28 23:55:51.543310" :		
	ilast_meas	time = "2016-03-29 00:52:03.935205" :		
	equator_ti	ne = "2016-03-29 00:23:57.772000"; All the necessary auxiliary information		
	()			

- PEACHI-J3 algorithms outputs are merged with official SGDR file contents
 - » 1 file per pass/cycle : filename = PEACHI_J3_SGDR_Cxxxx_Pxxxx.nc
 - » NetCDF format, CF-1.1 convention
 - » All SGDR fields unchanged
 - » PEACHI-J3 fields clearly identified
- First release (v1.0) : July 2016 Based on S-IGDR data

Some technical issues corrected in the next release

• [Current] Release version 2.0 : November 2016

• PEACHI-J3 specific outputs include :

- **» Numerical retracker** estimates (range, SWH, σ^0 , ξ^2 , quality flags, ...)
- » Geophysical corrections e.g. PEACHI-J3 NNet wet tropospheric correction, 3-D SSB
- » Latest versions of tide models, MSS, and other innovative algorithms (editing, rain flag, distance to nearest coast,...)
- » SSHA value computed using numerical retracker and updated geophysical corrections

- PEACHI-J3 algorithms outputs are merged with official SGDR file contents
 - » 1 file per pass/cycle : filename = PEACHI_J3_SGDR_Cxxxx_Pxxxx.nc
 - » NetCDF format, CF-1.1 convention
 - » All SGDR fields unchanged
 - » PEACHI-J3 fields clearly identified
- First release (v1.0) : July 2016 Based on S-IGDR data.

Some technical issues corrected in the next release

• [Current] Release version 2.0 : November 2016.

Where to get the products ?

- » ftp.jason3.oceanobs.com using the Jason-3 PIs login & password
- » Soon, PEACHI-J3 products will be available to all users on ODES (Online Data Extraction Service)

http://odes.altimetry.cnes.fr [Bronner et al. OSTST 2016]

PEACHI-J3 product validation [1/4]

Wet Troposheric Correction

Fréry et al.

- CLS method to retrieve the Wet Tropospheric Correction (WTC) is based on :
 - » ECWMF analysis (2-D surface + 3-D profiles) to compute the reference WTC
 - » A radiative transfer code to simulate Brightness Temperatures (BTs)
 - » A stratified neural network to retrieve the WTC from simulated BTs
- This method has been validated using Jason-2 measurements and applied to Jason-3 (GDR, cycles 1-21)
- Performance is evaluated at crossovers : △VAR_SSH = VAR_SSH_WTCref VAR_SSH_WTCNNet

- Global improvement is obtained using CLS NNet WTC, in particular at high latitudes
- Further validation needed to fully correct from AMR 34 GHz channel TB drift (Lauret et al.) and from J2/J3 bias
- This WTC is in PEACHI-J3 SGDR product

PEACHI-J3 product validation [2/4]

Sea-State Bias solution

Tran et al.

• Preliminary 3-D Sea State Bias (SSB) solution developed for Jason-3

Preliminary Jason-3 3D SSB

Jason-3 3D SSB model (SWH, U, Tm) developed with the collinear SSH differences approach within the CNES Jason-3 PEACHI project

- use of mean wave period (Tm) from IFREMER WaveWatch3 products
- to better model SSB behavior with improved description of the sea state
- commonly 3D models are derived with the direct method [Vandemark et al, 2002]
- Jason-3 data from cycles 4 to 7
- when U and Tm are fixed, the magnitude of the SSB is an increasing function of SWH
- when SWH is fixed, variations with Tm are larger than those with U
- crossover variance reduction: -1.54 cm² wrt GDR SSB values (5 times more than with the preliminary Jason-3 2D SSB solution)
- such model will be consolidated when 1-year of data will be available

- 3-D SSB Model :
 - » SWH from MLE4
 - (for comparison with current SSB solutions)
 - » Mean wave period Tm
 - » Wind speed U

Performance

(based on 4 cycles of Jason-3 IGDR data)

- \rightarrow Crossover variance reduction of
- -1.54 cm² wrt current GDR SSB value
- Promising solution, needs to be consolidated with 1-year of J3 GDR data

3-D SSB Model will be evaluated with SWH from numerical retracker
 This 3-D SSB solution will be available in the PEACHI-J3 product in 2017

S. Le Gac et al., PEACHI-J3, OSTST 2016

PEACHI-J3 product validation [3/4]

Numerical retracking

- Initially developed by CNES in the frame of SAR altimeter processing. Presented in preparation for Jason-3 by *Boy et al.* (OSTST 2014)
- Current retracking in Jason-3 ground-segment is MLE-4 to estimate the range, SWH, Sigma0 and mispointing angle. MLE-4 is based on an analytical model (Brown Model) used to fit the measured waveform.
- In the Brown Model, a Gaussian approximation is used for the instrument PTR
 → This approximation leads to errors in estimates : Look-Up Tables are necessary to correct for this approximation
 - » Range : \approx 1-2 cm
 - » SWH : ≈ 20 cm
 - » Sigma0 : few 10⁻² dB
- Numerical retracking can greatly improve the retracking strategy and performance
 - » Helps improving the radar echo modeling (numerical vs. analytical)
 - » No correction LUTs needed anymore!
 - » Ensures the sea level product quality over time

→ Important work has been performed to define a numerical retracker based on a non-biased convergence algorithm, accounting for speckle noise statistics [Poisson et al. OSTST 2016]

PEACHI-J3 product validation [4/4]

Numerical retracking

Poisson et al.

Waveform MQE difference between MLE4 and Nelder-Mead

Jason-3 Cycle 1 (IGDR)

0.0000

-0.0002

-0.0001

MOE NM < MOE MLE4

0.0001

0.0002

• The numerical retracker uses a real maximum likehood convergence criterion

Retracker	MLE4	Numerical retracker
Convergence criterion	Least squares	Maximum likelihood
Convergence method	Newton-Raphson	Nelder-Mead
Model	Brown(σ _p =0.513T)	Brown(σ_p =0) \otimes true PTR

- The fit between waveforms and model (MQE) is largely improved at the global scale
- Spectral analysis shows 20 Hz significant noise level reduction when using the numerical retracker wrt. MLE4
 - » -10% for SLA
 - » -60% for SWH

- PEACHI-J3 intends to deliver results from innovative algorithms and most possible upto-date geophysical corrections.
- PEACHI-Jason-3 products are currently being processed in SGDR version available in November
 - » Users feedback is important !
 - » Download at ftp.jason3.oceanobs.com or later through ODES
- Several years of work and progress on numerical retracking have lead to the numerical Nelder-Mead retracker
- CNES recommends including this retracker in future Jason-3 GDR releases and on all missions (high potential for reprocessing past altimeters)

Ongoing work includes :

- » Documentation & publication
- » Next processing planned Q1 2017 with 1 year of Jason-3 data

PEACHI-J3 related presentations

• Talks

[OUT] New features and attractive products in ODES, Bronner et al.
[IPC] Jason-3 SSB solutions, Tran et al. – earlier this afternoon
[IPM] New powerful numerical retracker, Poisson et al. – next talk by P. Thibaut
[NRT] CFOSat/SWIM Near-Real Time products, Tourain et al. – Wednesday pm

Posters on Thursday

[CVL_013] JPL validation of PEACHI-J3 product, Shah et al. [IPC_007] PEACHI-J3 Wet Tropospheric Correction (NN approach), Fréry et al. [IPM_004] Status of PEACHI AltiKa, Valladeau et al.

[IPM_011] Rain flag for Jason-3 from Continuous Wavelet Transform, Poisson et al.

Wet Tropospheric Correction (see slide #11)

Cf. Lauret et al. Jason-3 vs. Jason-2 AMR BTs differences

AMR Channel 34.0 GHz shows a J3-J2 drift

→ This drift impacts Jason-3 BTs and the associated simulations vs. measures bias correction in the WTC retrieval

Cnes