

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

A consistent set of SSB models applied to all reference missions Topex, Jason-1, -2 and -3

> <u>Nelson Pires</u>, Joana Fernandes, Christine Gommenginger, Remko Scharroo (nelson.pires@fc.up.pt)

Department of Geosciences, Environment and Spatial Plannings Faculty of Sciences – University of Porto

1st November 2016

OSTST meeting, La Rochelle

Model design and strategies

Jason-2 analysis

Topex, Jason-1 and -3

Conclusions

Introduction

UPORTO SSB model

- Nonparametric regression techniques based on penalized smoothing splines and GAMs
- 3 predictors: SWH, U10 and a mediator parameter designed by the mean wave period (Tz) derived from radar altimetry
- First tested on Jason-1 mission
- Good performances for a wide range of ocean conditions
- Pires, N.; Fernandes, M.J.; Gommenginger, C.; Scharroo, R. A Conceptually Simple Modeling Approach for Jason-1 Sea State Bias Correction Based on 3 Parameters Exclusively Derived from Altimetric Information. Remote Sens. 2016, 8, 576 [link]

OSTST meeting, La Rochelle

OSTST meeting, La Rochelle

Model parameterization

- RADS last update with DTU15 MSS on all missions
- SSB directly estimated from the residuals between SSH and DTU15 [Vandemark et al., 2002]
- 2 models tested for Tz:
 - Heuristic model G03 (SWH, σ_{Ku}^0) [Gommenginger et al., 2003]
 - Neural networks Q04 (SWH, σ_{Ku}^0 , σ_C^0) [Quilfen et al., 2004]
- Smoothing splines methods with GAMs
 - Different smoothing parameters for flexibility control
 - Bins weighting and outliers detection techniques
 - Several training datasets performed

OSTST meeting, La Rochelle

Jason-2 as a reference dataset

- Jason-2 Phase A was used to test different model designs and training datasets
- 5 model designs:
 - 1 2 predictors (SWH,U10), λ =5
 - **2** 3 predictors (SWH,U10,TzG03), λ =5
 - **3** predictors (SWH,U10,TzQ04), λ =5
 - 4 3 predictors (SWH,U10,TzQ04), λ =4
 - **5** 3 predictors (SWH,U10,TzQ04), λ =6
- 4 training datasets (10, 20, 50 and 120 cycles)

OSTST meeting, La Rochelle

J2/a SSB models [trainingData: 120 cycles]

OSTST meeting, La Rochelle

J2/a SSB models [trainingData: 050 cycles]

OSTST meeting, La Rochelle

J2/a SSB models [trainingData: 020 cycles]

OSTST meeting, La Rochelle

J2/a SSB models [trainingData: 010 cycles]

OSTST meeting, La Rochelle

Resulting guidelines

- Mean wave period adds more information to the model, producing better response fittings
- Q04 has a slightly better performance than G03, especially for regions with high SWH
- Tuning parameter λ =4 produces excessively smoothness
- Similar results for $\lambda = 5$ and $\lambda = 6$
- Even with a training dataset of 20 cycles is still possible to obtain a reliable and controlled model

Selected model

 $SSB = \beta_0 + f_1 (SWH, \lambda = 5) + f_2 (U10, \lambda = 5) + f_3 (Q04, \lambda = 5)$

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 120 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 120 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 120 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 050 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 020 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J2/a SLA VAR (collinear analysis) [trainingData: 010 cyc]

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle)

音合

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle)

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle) [trainingData: 050 cyc]

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle) [trainingData: 020 cyc]

OSTST meeting, La Rochelle

J2/a SLA VAR (cycle) [trainingData: 010 cyc]

OSTST meeting, La Rochelle

TX/a SSB models [trainingData: 120 cyc]

OSTST meeting, La Rochelle

TX/a SLA VAR (collinear analysis) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

TX/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

TX/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J1/a SSB models [trainingData: 120 cyc]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J1/a SLA VAR (collinear analysis) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J1/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J1/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J1/a SLA VAR (cycle) [trainingData: 120 cyc]

OSTST meeting, La Rochelle

J3 SSB models [trainingData: 020 cycles]

Model design and strategies Jason-2 analysis Topex, Jason-1 and -3 Conclusions

J3 SLA VAR (collinear analysis) [trainingData: 020 cycles]

OSTST meeting, La Rochelle

J3 SLA VAR (cycle) [trainingData: 020 cycles]

OSTST meeting, La Rochelle

J3 SLA VAR (cycle) [trainingData: 020 cycles]

OSTST meeting, La Rochelle

J3 SLA VAR (cycle) [trainingData: 020 cycles]

OSTST meeting, La Rochelle

Conclusions

- The mean wave period from Q04 clearly improves the model design and adds some stability when SWH is high
- The direct method is able to produce SSB estimations with good resolutions for modeling feeding, even with little information
- Regarding Topex and Jason-1, the validation results are in line with the standard SSB models currently available
- The proposed approach is capable of generating a reliable model with a limited training dataset (~20 cycles)
- For Jason-2 and -3 the proposed model achieves a reduction of SLA variance in ${\sim}1\%$ when compared with standard SSB models