ACCRA :

A Study on Future Microwave Radiometers for Atmospheric Correction of Radar Altimeters on Coastal Regions

Bruno Picard (CLS); Janet Charlton (JCR System); <u>Laura Hermozo (CLS);</u> Laurence Eymard (LOCEAN/IPSL); Fatima Karbou (CNRM/GAME); Adrian R.L. Tatnall (SOTON); Brian Monya (STFC); Soe M. Tun (SMT); Manuel Martin-Neira (ESA/ESTEC)

OSTST 2016, La Rochelle

Altimeter performances in terms of spatial resolution rapidly improve

- LRM, Ku-band ~ 10 km (Jason's)
- LRM, Ka-band ~ 6 km (AltiKa)
- SAR mode (Cryosat, Sentinel-3) < 1 km
- SWOT (interferometry) < 1 km

Meanwhile, the progresses on Microwave Radiometers spatial resolutions are slow:

- Jason's ~ 35 km (18.7 GHz, 23.8 GHz, 34 GHz)
- Envisat ~ 30 km (23.8 GHz, 36.5 GHz)
- Sentinel-3 ~ 25 km (23.8 GHz, 36.5 GHz)
- AltiKa ~ 10 km (23.8 GHz, 37 GHz)

Meanwhile, the progresses on Microwave Radiometers spatial resolutions are slow: \rightarrow this is clearly a limit for coastal applications (land contamination) hydrological applications high-resolution SSH (convective cells) The ACCRA study (12 months, ended October 2016), fully supported by ESTEC, gathers experts in both hardware and retrieval fields and is based on the following credo :

The solutions to improve the spatial resolution rely **both** on **a smart design** and **dedicated retrieval methods**.

Objectives

 The objective of this activity is to elaborate a novel MWR instrument design at preliminary design level, aimed primarily for future operational altimetry missions such as next Generation Sentinel-3 and Jason-CS.

Objectives

- The instrument shall comprise of
 - Two/three classical observation channels (Jason's)
 - A set of high frequency channels with higher spatial resolution for resolving coastal and inland waters.
 - HF channels shall enable retrievals over sea ice and icesheets.
- A compact instrument, not significantly exceeding the size of the current MWR's is desirable

Objectives

• A dedicated retrieval algorithm of the wet tropospheric correction (accounting for the range delay due to the water vapour)

 To get the best of the HF channels over Ocean, Coastal regions, Land and Ice surfaces

Task 1: selection of HF channels

9 channels selected considering physical constraints: classical LF (18/23/36), surface emissivity (50.3/89), atm. temperature (54/118), window channels (110, 165), HF WV absorption line (183)

	Channel	Central	DDR [MHz]	Sensitivity	Spatial
		Frequency		NeDT [K]	Resolution
\implies	MWR-1	18.7	200	<0.15 K	<15 km / < 25 km
\implies	MWR-2	23.8	400	<0.15 K	<15 km / < 25 km
\implies	MWR-3	36.5	200	<0.15 K	<15 km / < 25 km
\implies	MWR-4	50.3	400	<0.20 K	<10 km / < 15 km
\longrightarrow	MWR-5	53.596	400	<0.20 K	<10 km / < 15 km
	MWR-6	89	3000	<0.20 K	<5 km / < 10 km
\implies	MWR-7	110.65	400	<0.25 K	<5 km / < 10 km
\implies	MWR-8	118	2×400	<0.25 K	<5 km / < 10 km
\implies	MWR-9	165	2×1350	<0.30 K	<5 km / < 10 km
\longrightarrow	MWR-10	183.31-11	2000	<0.30 K	<5 km / < 10 km

Slide 14

Task 1: selection of HF channels

 6 channels recommended by ESTEC considering cost/complexity constraints

	Channel	Central Frequency	DDR [MHz]	Sensitivity NeDT [K]	Spatial Resolution
\longrightarrow	MWR-1	23.8	400	<0.15 K	<15 km / < 25 km
\implies	MWR-2	36.5	200	<0.15 K	<15 km / < 25 km
\longrightarrow	MWR-3	50.3	400	<0.20 K	<10 km / < 15 km
\longrightarrow	MWR-4	53.596	400	<0.20 K	<10 km / < 15 km
	MWR-5	89	3000	<0.20 K	<5 km / < 10 km
\longrightarrow	MWR-6	183.31-11	2000	<0.30 K	<5 km / < 10 km

Slide 15

Task 2: Instrument Design: configuration

- The overall volumetric dimensions for a 1.1m antenna aperture are : Height : 1593mm Width : 1421mm **IF Module** ICU Depth: 1570mm 54GHz Horn & Receiver The dimensions of the interface to the platform are: Width : 1085mm **FSM** 23.8/36.5GHz Horn Depth: 882mm Cold Target Hot Target **Cold Space** for Sun Synch ĊSM
- Configuration does not currently illustrate a thermal shield for the primary reflector but expect this to be beneficial for at least the non sun synchronous orbit, possibly both orbits, as MWI has concluded. Also know from MWI that such a shield is also a mass efficient solution to the primary structural support.

Task 2: Instrument Design: system performances

Spatial Performance:

Frequency (GHz)	HPBW (min)	HPBW (max)	HPBW (mean)	BE (Co) %	BE (Xp) %	BE (total) %	FBE %	Remark
18.7	1.13	1.16	1.15*	95.2	0.4	95.6	96.0	>HPBW
23.8	1.03	1.04	1.04	96.1	0.3	96.4	97.6	Spec
36.4	1.01	1.02	1.02	98.55	0.25	98.8	99.0	
53.6	0.62	0.62	0.62	98.55	0.25	98.8	99.0	
89.0	0.32	0.34	0.33	98.15	0.25	98.4	98.7	
110.0	0.32	0.32	0.32	99.03	0.17	99.2	99.6	
118.0	0.34	0.34	0.34	99.15	0.15	99.3	99.6	
165.0	0.34	0.34	0.34	99.67	0.13	99.8	99.8	
\ /183.0e7 was	0.34	0.35	0.35	99.77	0.13	99.9	99.9	ų.

Antenna subsystem constrained by high requirements on spatial resolution and directivity to minimize side-lobes effect

Task 2: Instrument Design: sensitivity

Assumes EoL Conditions:

Sun Synchronous (5km)

Channel	Centre Freq	Preselected	Ant			Ne∆T (K)	Ne∆T (K)	Ne∆T (K)	Ne∆T (K) Total 20% margin	ave	Ave	
no.	(GHz)	BW(MHz)	Loss(dB)	Trec (K)	Tsys (K)	frontend	cal noise	Th ∆G/G	RSS	factor	Ne∆T (K)	Req'mt
1	18.7	200	0.9	225	344	0.05	0.08	0.07	0.13	1.73	0.08	0.15
2	23.8	400	0.9	264	392	0.04	0.06	0.07	0.12	1.73	0.07	0.15
3	36.5	200	0.9	335	479	0.06	0.10	0.08	0.16	1.73	0.09	0.15
4	53.596	400	0.5	351	429	0.04	0.07	0.07	0.12	1.41	0.09	0.2
5	89	3000	0.6	450	560	0.02	0.03	0.09	0.11	1.00	0.11	0.2
6	110.65	400	0.8	627	812	0.06	0.10	0.11	0.19	1.00	0.20	0.25
7	118.75	400	0.8	627	812	0.06	0.10	0.11	0.19	1.00	0.20	0.25
8	165.5	1350	0.9	1048	1356	0.05	0.08	0.17	0.23	1.00	0.23	0.30
9	183.311-11.0	2000	0.9	957	1244	0.04	0.06	0.16	0.21	1.00	0.21	0.30

Slide 19

Conclusion

- The ACCRA study gathers experts with skills on hardware and retrieval aspects
- In order to properly define the optimal instrumental design, a back and forth approach between design and algorithm performances is applied

Conclusion

 A set of 6 observation frequencies has been selected with additionnal information on water vapour, atmospheric situation, surface characterization

• Requirements and a design are proposed

Conclusion

 1DVAR approach is a very flexible method. The same algorithm can be applied to multiple surfaces, it takes the optimal benefits from the observations and the model (not limited by inconsistencies as the empirical NN) and its flexibility allows a downscaling approach.

Thank you for your attention

