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Background

• Accurate marine gravity data can help to understand detailed 

seafloor tectonics.

• The accuracy of the global marine gravity has been greatly 

improved from CryoSat-2 and Jason-1 GM (Sandwell et al. 2014, 

Science)

– ~1-2 mGal over deep oceans  
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– ~10 mGal in coastal zones and high mesoscale variability areas

• The new global marine gravity is able to reveal buried tectonic 

structures, and will lead to more discoveries of tectonic features.

• The challenge remains in coastal areas

– Distorted altimeter waveforms exist

– SSH cannot be converted to gravity at a coastal point unless land gravity is 

also known.



Background (Cont.)

• The Taiwan gravity field 
– Important tectonic features.

– Regional features: shallow water 

(< 200 m), small islands, and 

rugged coastlines. 

– Ship-track gravity data
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• The retracking results until now still show margins for 

SSH improvement near coastal areas
– The quality and availability of retracked SSHs are still limited within ~10 km 

to the coastline

– Two-pass retracking (Sandwell & Smith) largely reduces SSH error through 

smoothing SWH (~45 km half wavelength), but this may not be the case 

near coast



Jaons-1 GM (left) and Cryosat-2 (right) data 

around Taiwan
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Jason-1 waveform features
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Along−track waveforms: P500−128
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Along−track waveforms: P534−104
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Along−track waveforms: P536−271
 

21

22

23

24 200

250

300

350

400

450

• High noise level appears after leading edge and before gate ~60

• Waveforms corrupt frequently 

Waveform gate
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Retracking strategy

• Can SSH be retrieved at the same level, in terms of 

availability and precision, as those over open oceans for 

modelling of regional marine gravity field?

– A dedicated waveform retracking procedure is necessary.

• The SSHs are derived by
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– A sub-waveform retracker by Idirs & Deng (2012)

– A sub-waveform retracker ALES by Passaro et al. (2014) 

– A weighted waveform retracker IALES by Peng and Deng 

• IALES assigns a small weight to highly noisy waveform gates.

– Two-pass retracking but with a suitable filter window (~14km) for 

SWHs in the study area,

– Validation through comparisons with in situ tide-gauge and ship-track 

gravity data.



Jason-1 sub-waveform retracking

Sub-waveform fitting 

results from retracking 

Jason-1 multi-peak 

(top), and quasi 

specular (bottom) 

waveforms. 
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waveforms. 

(Idris & Deng, 2014, Marine 

Geodesy)



ALES (Passaro et al. 2014) and weighted retracker

(ILAES, by authors)

• IALES can 

achieve similar 

accuracy to 

ALES.

• But IALES works 

better than ALES 
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better than ALES 

for Brown-peaky

waveforms. 

• Results have 

been validated 

against TGs.
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GDR MLE4 retracked SSHs
Sub−waveform retracked SSHs



GDR MLE4 (left) and sub-waveform (right) retracked

SSHs
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Recovered Jason-1 GM 1Hz SSHs

• Recovered SSHs are 

mainly near shoreline 

and around small 

islands.

• GDR SSHs are also 
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• GDR SSHs are also 

missing over deep 

oceans. 



Determination of the marine gravity field

• Data include Jason-1 GM and Cryosat-2

• The marine gravity field is determined using DTU’s both 

techniques of the DTU and NCTU 

– e.g., the remove-compute-recover technique with the inverse Vening

Meineszs method (Hwang, 1998)
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• Different cases are investigated:

– Case 1: Jason-1 GDR data 

– Case 2: Jaosn-1 GDR data + Cryosat-2 data

– Case 3: Jaosn-1 sub-waveform retracked data

– Case 4: Jaosn-1 sub-waveform retracked data + Cryosat-2 data

• Assess the accuracy of altimeter-derived marine gravity 

models based on all available ship-track gravity data. 



Distribution of Ship-track free-air gravity anomalies 

(mGal) around Taiwan 14

Data accuracy:

0.08-2.35 mGal

(Hwang et al. 2014, 

Tectonophysics)Tectonophysics)



Case 1: Free-air gravity anomalies (FAGA) from 

Jason-1 GDR SSHs (in mGal)
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Validated against ship-track 

gravity 



Case 2: FAGA from Jason-1 GDR + Cryosat-2 SSHs 

(in mGal)
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Validated against ship-track 

gravity 
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Case 3: FAGA from sub-waveform retracked Jason-1 

SSHs (in mGal)

Validated against ship-track 

gravity 
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Case 4: FAGA from sub-waveform retracked Jason-1 

+ Cryosat-2 SSHs (in mGal)

Validated against ship-track 

gravity 



DTU15 FAGA (in mGal)
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Validated against ship-track 

gravity 



Comparison between modelled and ship-

track FAGA 

unit: mGal
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Gravity model Mean Max Min STD RMS

GRD Jason-1 -0.37 39.89 -53.04 9.12 9.13

GRD Jason-1 + Cryosat-2 -0.62 39.89 -53.05 8.26 8.29GRD Jason-1 + Cryosat-2 -0.62 39.89 -53.05 8.26 8.29

Retracked Jason-1 -0.42 41.00 -54.06 8.96 8.96

Retracked Jason-

1+Cryosat-2

-0.67 40.79 -56.50 8.21 8.24

DTU15 -0.62 41.91 -56.70 8.09 8.11

Considering the mean rms error 1.22 mGal for ship-track 

gravity data, the accuracy of altimeter-derived gravity 

is ~8 mGal. 



Conclusions

• A dedicated retracking procedure retrieves more SSHs than GDR 

MLE4 retracker over the area, in particular, near the coastline.

• When compared to ship-track gravity data, our retracked SSHs 

result in a more accurate gravity field.

• The altimeter-derived marine gravity has so far an accuracy ~8 

mGal around Taiwan.
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mGal around Taiwan.

• The study is continuing for resolving high-resolution tectonic 

features. 

• To achieve a 1-2 mGal accuracy for efficient extraction of tectonic 

features around Taiwan, it requires 

– increasing altimeter data volume 

– developing novel data-processing strategies and gravity recovery methods
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