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Summary

• We use the portable ocean SWOT simulator1 to quantify spatial correlations of 
errors in the future SWOT observations;

• We develop and implement a method to account for these correlations in the 
assimilation of (reduced-resolution) SWOT data;

• We conclude that accounting for error correlations is essential to accurately 
assimilation SWOT observations.

1 Gaultier et al, 2016, https://github.com/SWOTsimulator

https://github.com/SWOTsimulator


Why observation error correlations 
matter for data assimilation?
Because we need the observation error covariance matrix to assimilate the 
observations. 

An assimilation algorithm seeks the best compromise between a prior 
estimate and the observations by minimizing a cost function: 
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Challenges
1. We must estimate the observation error covariance matrix.

2. What we actually need is the inverse of the observation error covariance 
matrix.
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Challenge 1: estimating the matrix
 We perform 5000 realizations of 
SWOT errors with the simulator.
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Challenge 2: using the matrix in the 
assimilation algorithm
The observation error covariance matrix is too big to be inverted 
numerically.

In large systems (meteorology, oceanography), it is considered diagonal. 
Actually, the design of usual data assimilation systems is based on this 
approximation.

To alleviate the detrimental effects of this approximation, common (but not 
satisfactory) solutions are:

- to rule out observations when they are suspected of correlated errors,

- inflating the error variances (diagonal of the matrix).



Challenge 2: what we propose
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Introduce a transformation of the observations:
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Challenge 2: what we propose

We introduce

and find        (diagonal) that minimizes the matrix norm
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Results
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Conclusions and discussions

• Accounting for error correlations is essential to accurately assimilate 
SWOT observations, and we propose a method to do so (Ruggiero et al, 
JTECH, in press). 

• Need to get rid of the uncorrelated KaRIn instrumental error to use the full 
resolution of SWOT (we are developing denoting techniques);

• The method is applicable to nadir altimetry (using along-track derivatives). 
Useful?

• The method can be complemented with online diagnostics (Desroziers et al, 
2005) to improve the representation of the observation error covariance 
matrix.
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