

A SAR ALTIMETRY END-TO-END SIMULATION AND PROCESSING CHAIN

Michele Scagliola, Luca Maestri, Lisa Recchia, Davide Giudici

End-to-End Simulation and Processing Concept

Aiming at determining the instrument performance, numerical simulation of the instrument, and the retrieval of the geophysical parameters from its output, is required. To this aim an End-to-End simulation chain is designed and developed.

The physical observable is replaced by a model in the simulation chain, that has a reference ground truth as input

- □ The observing system is replaced by a data acquisition mode in the simulation chain
- The processing chain is fed by the simulated raw data in the simulation chain

L2 Exporter

L2

• The simulated results can be compared with the reference ground truth for performance assessment

Aresys SAR Altimetry End-to-End Simulation and Processing Chain

ISP/L1A Data Simulator

• allows for modeling of waveforms with bandwidth different from sampling frequency □ has been verified by comparison with SAMOSA

[1] L. Recchia, M. Scagliola, D. Giudici and M. Kuschnerus, "An Accurate Semianalytical Waveform Model for Mispointed SAR Interferometric Altimeters," in IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 9, pp. 1537-1541, Sept. 2017.

Performance Assessment

It compares the geophysical parameters provided as input to the simulation and the corresponding ones retrieved by L2. The performance of the simulated endto-end system can be assessed.

