

Mitigation of Spatial and Temporal Orbit Errors in Satellite Altimeter Sea Surface Height Measurements

Shailen Desai, Willy Bertiger, Bruce Haines, and Aurore Sibois Jet Propulsion Laboratory, California Institute of Technology

October 19-23, 2020

© 2020 California Institute of Technology. Government sponsorship acknowledged.

- Validate Precise Orbit Ephemeris (POE) on Jason-2 and Jason-3 Geophysical Data Records using GPS-based precise orbit determination.
 - Independent software
 - POE uses combination of GPS and DORIS tracking data.
- Investigate approaches for improving GPS-based precise orbit determination (POD), and evaluating overall performance.
- Results have been presented during each of Precise Orbit Determination (POD) splinter sessions of OSTST from 2017-2020.

Investigated Impact of Various Approaches to GPS-based POD

- Evaluated impact of:
 - Dynamic force models, e.g.:
 - Time-varying gravity models
 - Models for dynamic atmosphere and oceans (AOD)
 - Antenna calibrations:
 - Pre-launch versus in-flight.
 - Transmitter antenna calibrations.
 - Tracking data resolution:
 - 30-seconds versus 5-minute
 - Elevation-dependent data weighting
 - References frames (IGS08 vs. IGS14)
 - GPS constellation orbit and clock products, e.g.:
 - Fiducial-fixed, no-net-rotation, fiducial-free.

Metrics for Evaluating Orbit Accuracy

- Internal Metrics:
 - Orbit precision as measured by differences between daily 30-hour
 POD solutions during 6-hour overlapping period.
 - Data noise as measured by post-fit data residuals
- External Metrics:
 - Sea surface height crossover variance
 - Withheld Satellite Laser Ranging (SLR) tracking data
- Orbit Comparisons:
 - Geophysically correlated orbit errors
 - Temporal variations.

In-Flight GPS Antenna Calibration Improves Orbit Precision (2017 OSTST)

 Sub-mm radial precision for Jason-2 and Jason-3.

Median of Radial Precision (mm)

	JA2-A	JA2-B	JA3
Pre-Launch Cal.	1.1	1.3	1.2
In-Flight Cal.	0.9	1.2	0.9

Modern Reference Frames Improves Orbit Precision (2018 OSTST)

Median of Radial Precision (mm)

	IGS08	IGS14
Jason-2	1.0	0.9
Jason-3	1.0	0.8

References Frames Impact Orbit Centering (2018 OSTST)

- Map radial orbit differences from Jason-3 cycles 1-84.
 - Simultaneously fit bias, drift, beta prime (118 days) period, annual period.
 - Epoch for bias is cycle 1.
- Primary impact is on orbit centering.
 - Smaller than predicted by ITRF14/ITRF08 translation and slightly shifted north/west:
 - (X, Y, Z)=(1.6, 1.9, 2.4) mm
- Also considered:
 - Drift: < 0.5 mm/yr
 - Beta-prime period: < 0.5 mm
 - Annual period: < 0.5 mm.

GPS Orbit and Clock Products Impact Orbit Accuracy (2019 OSTST)

- Best radial orbit accuracy achieved when using IGS14 fiducial-fixed GPS satellite orbit and clock products (IGS14), as compared to:
 - NNR = No-Net Rotation
- SLR performance improves significantly when modeling annual geocenter motion in the SLR station positions.

October 19-23, 2020

"Signals of Opportunity" in Jason-3 Post-fit Residuals (2019 OSTST)

- IGS GPS transmitter calibrations do not contain any azimuthal variations.
- Accumulating JPL Release 19a post-fit residuals reveal strong (up to 10 mm) azimuthal variations for many GPS satellites.
 - Corresponds to transmitter antenna elements.
- Improved GPS-based POD accuracy achieved by accounting for azimuthal variations in GPS transmitter calibrations.
 - Evidenced by lower SLR residuals.

Geographically Correlated Orbit Differences with POE-F (2019 OSTST)

• Relative bias of +/- 4 mm, and relative drift of +/- 0.5 mm/year between GPS-only orbit solutions and POE-F.

October 19-23, 2020

OSTST 2020

Small Impact from Using 30-sec Instead of 5minute GPS Tracking Data (2020 OSTST)

- Similar performance of all GPS-only solutions.
 - 30-sec solutions biased higher than 5-min solutions by ~0.3 mm.
 - Consistent with orbit differences.
- GPS-only solutions biased higher than POE-F by 0.9 mm.
- GPS-only solutions have lower standard deviation than POE-F at all elevations.

- Improvements to GPS-based precise orbit determination have been achieved using:
 - In-flight antenna calibrations.
 - Modern reference frames.
 - Observation-based models for azimuthal variations in GPS constellation transmitter calibrations.
- Independent assessment using withheld SLR tracking data improves when accounting for:
 - Annual geocenter motion at SLR tracking stations
 - Calibration for Laser Retroreflector Array instrument.