Latest results of DGFI's multi-mission crossover analysis

Denise Dettmering, Christian Schwatke, and Wolfgang Bosch

Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) Munich, Germany email: denise.dettmering@tum.de

Multi-mission crossover analysis

OSTST 2015, 20.-23.10.2015

Goals:

- check the consistency between different altimeter missions
- extract information on the noise level of different instruments
- detect systematic errors in the data sets

Method:

- ➤ building single- and dual satellite crossover differences in all combinations (Δt < 2 days)</p>
- minimizing crossover diff. and the along-track consecutive diff. in an least squares adjustment
- > TOPEX (later Jason1 and Jason-2) taken as reference mission

Output:

- Time series of radial errors
- Relative range biases (global mean and per cycle)
- Relative instrument drifts
- Geographically correlated SSH errors

Altimeter Missions

- ✓ consistent reference systems
- ✓ harmonized data sets
- ✓ most resent satellite orbits and correction models

Radial errors of all missions

for some missions (or mission phases) systematic behavior detectable

Extended time series for J2 and SARAL

- □ TOPEX long-term drifts?
- □ Jason-1 GDR-E
- **ERS** Reaper products
- HY-2A

Jason-2

Saral

Relative Differences between Saral and Jason-2

8

- Extended time series for J2 and SARAL
- □ TOPEX long-term drifts?
- □ Jason-1 GDR-E
- ERS Reaper products
- HY-2A

Relative long-term instrument drifts

Relative long-term instrument drifts (TOPEX-B)

Relative drifts between Jason-1 (GDR-D) and TOPEX (side B)

Drift is mathematically not significant

Watson et al, 2015:

TP_B: 0.93 ± 0.92 mm/yr

J1-TP B:

-0.51 ± 1.01 mm/yr

 $0.42 \pm 0.41 \text{ mm/yr}$

Less than 4 years of data

J1:

- > Different results!
- However: when taking the standard deviations into account, no difference can be attested

Relative long-term instrument drifts (TOPEX)

Relative range bias between ERS-2 (OPR) and TOPEX

OSTST 2015, 20.-23.10.2015

- > A change in trend behavior might be detectable early 1999
- Noise and other systematics are to large to extract reliable conclusions

- Extended time series for J2 and SARAL
- □ TOPEX long-term drifts?
- □ Jason-1 GDR-E
- ERS Reaper products
- HY-2A

Jason-1 GDR-E (range bias)

- range bias in GDR-E reduced (but still not zero)
- > drifts w.r.t. TOPEX not significant

Jason-1 – Geographically Correlated Errors (GCE)

- Extended time series for J2 and SARAL
- □ TOPEX long-term drifts?
- □ Jason-1 GDR-E
- **ERS** Reaper products
- HY-2A

ERS REAPER – Radial errors

- range bias in REAPER product enlarged
- ➢ global mean range bias now similar for ERS-1, ERS-2, and ENVISAT

ERS REAPER – Geographically Correlated Errors

Completely different patterns (despite of same corrections and similar orbits)
ERS-2 show higher SSH GCE after the reprocessing...

ERS-2 REAPER

- Extended time series for J2 and SARAL
- □ TOPEX long-term drifts?
- □ Jason-1 GDR-E
- ERS Reaper products
- HY-2A

HY-2A

Strong drift in Range Bias detectable

Some periods with significant time tag bias

Conclusion

□ Jason-2 shows no systematic behavior.

- Saral shows periodic signal in z-shift of the origin due to radiometer corrections.
- □ Jason-1 GDR-E product (first three years) shows a reduced range bias and slightly improved GCE pattern (w.r.t GDR-D).
- ERS-2 REAPER shows increased GCE; related to radiometer correction.
- □ HY-2A should only be used when a time-dependent instrument bias is taken into account.

Bias drifts from Watson et al, 2015 can neither be confirmed nor disproved.

Questions?

Denise Dettmering, Christian Schwatke, and Wolfgang Bosch

Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM) Munich, Germany email: denise.dettmering@tum.de

